TeraPCA: A fast and scalable method to study genetic variation in tera-scale genotypes

- Principal Component Analysis (PCA) is a key tool in the study of population structure in human genetics.
- As modern datasets become increasingly larger in size, traditional approaches based on loading the entire dataset in the system memory (RAM) become impractical and out-of-core implementations are the only viable alternative.

Problem statement

The TeraPCA library

Our contribution is summarized in TeraPCA, a C++ library to perform out-of-core PCA of large genetics datasets:

- **I** TeraPCA computes the sought Principal Components by partially solving a symmetric eigenvalue problem.
- This eigenvalue problem is solved by Randomized Subspace Iteration.

Why it works: typical applications in genetics only require a very small number of PCs (e.g., 10) within a small accuracy (e.g., two-three digits). Most importantly, Randomized Subspace Iteration features block iteration thus allowing higher granularity in out-of-core settings.

- 8: until convergence
- 9: return first k columns of Q

Aritra Bose 1 , Vassilis Kalantzis 2 , Eugenia Kontopoulou 1 , Mai Elkady 1 , Peristera Paschou 3 , Petros Drineas 1

1-Department of Computer Science, Purdue University, West Lafayette, IN, USA 2-IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA 3-Department of Biological Sciences, Purdue University, West Lafayette, IN, USA

-
-

Algorithm Out-of-core MMV $C = A(A^{\top}X)$

- **Input:** $\zeta > 0$, $m \times s$ matrix X. **Output:** $m \times s$ matrix C.
- 1: $C = 0$
- 2: for $i = 1 : \zeta$ do
- 3: Fetch the *i*-th row-block of A^{\top}
- 4: $C = C + A_i(A_i^{\top} X)$
- 5: end for

- \blacktriangleright Our goal is to approximate the ten leading Principal Components (PCs). For TeraPCA we set the dimension (s) of the initial approximation subspace equal to **twenty**.
- All our experiments ran at Purdue's Brown cluster on a dedicated node which features an Intel Xeon Gold 6126 @ 2.6 GHz processor, 96 GB RAM and 64-bit CentOS Linux 7 operating system.

Algorithm Randomized Subspace Iteration

Input: $A^{\top} \in \mathbb{R}^{n \times m}$, initial guess matrix $X_0 \in \mathbb{R}^{m \times s}$ with elements drawn i.i.d. from the normal distribution $N(0, 1)$, $k \ge 1$, and $s \ge k$.

Output: The k leading approximate left singular vectors of A.

1:
$$
C = A(A^T X_0)
$$

\n2: **repeat**
\n3: $Q = \text{orth}(C)$
\n4: $C = AA^T Q$
\n5: $M = Q^T C$
\n6: Compute the eigenvalue decomposition $M = XDX^T$
\n7: $C = QX$

Datasets & Experimental Setup

Figure: Element-wise relative error of the 10 leading PCs computed by TeraPCA versus those computed by LAPACK for the HGDP dataset.

Accuracy of leading eigenvalues

This work was supported by NSF BigData 1661760, NSF IIS1319280 and NSF IIS 1302231.

- TeraPCA GitHub Repository: https://github.com/aritra90/TeraPCA
- Data Simulator GitHub Repository: https://github.com/eugeniamaria/DataSimulator

Time comparisons

Comparison with FlashPCA2 (only 2GB RAM was allowed)

Table: TeraPCA vs FlashPCA2 (* indicates no convergence after 50 hrs).

TeraPCA has an advantage over FlashPCA2 (which is based on Implicit

take advantage of state-of-the-art dense linear algebra kernels (e.g., BLAS, LAPACK)

Restarted Arnoldi) due to its block nature which allows to:

- search for multiple PCs simultaneously
- perform more computations per epoch
-

Speedup using Multithreading

Accuracy Results

Accuracy of leading PCs

Table: Accuracy of the 10 leading eigenvalues computed for TeraPCA and FlashPCA2.

Acknowledgements