
Summary
Many applications require the computation of a few singular 
values and vectors of a large, sparse matrix.  We present a 
polynomial filtering technique for accelerating such 
computations.  Our method is competitive with existing 
algorithms and is particularly effective when many singular 
values are required.
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What if we need many singular values, possibly not the 
leading ones?
 • One approach:  Keep taking Lanczos steps until all desired
 • values converge. 
     – The number of steps needed may be quite large.
     – Each step produces two new Lanczos vectors, increasing
     – memory usage and orthogonalization costs.
 • Better idea:  Apply a spectral transformation.
     – Move the desired values to the high end of the spectrum.
     – The classic choice is the shi�-and-invert 
     – transformation—quite effective but expensive for large           
     – matrices (must solve linear systems).

The Problem
Benefits:
 • Better isolation of the wanted singular values means fewer 
 • Lanczos steps are needed for convergence.
 • Fewer steps means fewer Lanczos vectors, saving memory 
 • and effort spent on orthogonalization.
 • Since the filter is a polynomial, the method engages A only 
 • via matrix-vector products—superior scaling to shi�-and-
 • invert.
 • Interior singular values can be easily computed by choosing 
 • a filter that de-emphasizes the extreme ones. 
 • If many interior singular values are required, multiple 
 • search intervals can be processed in parallel.
 • The method is easier to implement than restarted Lanczos.

We implemented our method on top of the Lanczos 
bidiagonalization routines available in the SLEPc library.  
Some practical details:
 • We scale the matrix so that its singular values lie in [0, 1]
 • using an initial estimate of the leading singular value, 
 • which we get from a few (≈10) steps of unfiltered Lanczos.   
 • We employ full reorthogonalization to ensure orthogonality 
 • of the computed singular vectors.

Example:  We compute the leading 100 singular values of the 
"dawson5" matrix from the UF Sparse Matrix Collection.
 • Problem size:  51,537 × 51,537 with 4,653,901 nonzeros.
 • We use our method with degree-11 and degree-17 filters on 
 • [0.87, 1].
 • We compare with unfiltered Lanczos, the thick-restart
 • Lanczos solver in SLEPc, and svds in MATLAB.

The results are summarized in the following pair of tables.  
The filtered Lanczos methods use more matrix-vector 
products but spend far less time on orthogonalization, 
leading to significant computational savings.

Lanczos bidiagonalization is an efficient and scalable method 
for computing a few leading singular values of a large matrix.
 • Using the two-step recurrence

 • compute matrices       and       with orthonormal columns 
 •                     and                    (Lanczos vectors) such that

 • The singular values of       approximate those of    .
 • As    increases, the largest singular values converge first.
 • The better-separated these values are from the rest, the 
 • faster the convergence. 
 • The method engages     only through matrix-vector products.

We propose using a polynomial filter to accelerate the 
computation.
 • If    is a polynomial and

 • is the SVD of    , then

 •                  has the same singular vectors as    , but its 
 • singular values have been transformed by the filter   .

By selecting    so that    is large on the singular values of 
interest and small on the rest, the Lanczos algorithm applied 
to                   will rapidly pick out singular vectors 
corresponding to the desired values.  We choose    so that    is 
a Chebyshev least-squares approximation to the 
characteristic function of the interval containing the singular 
values of interest.  Note that    always has odd symmetry.


