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GPU IMPLEMENTATION
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Cucheb is written in CUDA and as of now targets
NVIDIA Graphic Processing Units:

⇒ Cucheb implements a non-restarted, filtered block
Lanczos procedure using full orthogonalization.

⇒ Matrices are loaded and handled using the CSR
format. Sparse (dense) linear algebra is performed
by cuSPARSE (cuBLAS).

⇒ The user need provide only the matrix and the in-
terval of interest [α, β].

https://github.com/jaurentz/cucheb

PERFORMANCE OF Cucheb USING A BLOCK VARIANT OF LANCZOS
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GPU v. CPU speedups, τ:= # of threads in MKL
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Matrix n nnz/n

Ge87H76 112, 985 69.9
Ge99H100 112, 985 74.8
Si41Ge41H72 185, 639 80.9
Si87H76 240, 369 44.4
Ga41As41H72 268, 096 69.0

Test matrices: We tested Cucheb on a few Hamiltonians
generated using the PARSEC package.

Hardware: K40m GPU with 11 GB of RAM and 2880
CUDA cores. The host CPU was a Haswell Xeon E5-2680
processor.

Matrix interval eigs m iters MV time

50 210 31, 500 31
100 180 54, 000 40

Ge87H76 [−0.645,−0.0053] 212 150 150 67, 500 44

50 210 31, 500 32
100 180 54, 000 41

Ge99H100 [−0.650,−0.0096] 250 150 180 81, 000 56

50 210 31, 500 56
100 180 54, 000 73

Si41Ge41H72 [−0.640,−0.0028] 218 150 180 81, 000 99

50 150 22, 500 38
100 90 27, 000 35

Si87H76 [−0.660,−0.3300] 107 150 120 54, 000 63

200 180 144, 000 225
300 180 162, 000 236

Ga41As41H72 [−0.640, 0.0000] 201 400 180 216, 000 306

THE FILTERED LANCZOS PROCEDURE
Many applications require the computation of all eigen-
values and associated eigenvectors lying inside a real
interval [α, β] of a large and sparse symmetric matrix
A ∈ Rn×n.

The Lanczos method is an efficient approach when
[α, β] lies on the periphery of the spectrum, and en-
gages A only through Matrix- Vector products. Lanczos
is based on a three-term recurrence:

Aqi = βi−1qi−1 + αiqi + βiqi+1, (q0 = 0, β1 = 0).

In theory, {q1, . . . , qi+1} form an orthonormal basis. In
practice, orthonormality must be explicitly enforced.

The eigenvalues of A are approximated by those of

Ti =



α1 β1
β1 α2 β2

β2
. . . . . .
. . . αi−1 βi−1

βi−1 αi

 ,

where the peripheral eigenvalues ofA converge first and
the convergence rate is affected by the relative separa-
tion.

What if [α, β] lies in the interior of the spectrum and/or
includes a large number of eigenvalues→ Lanczos will
perform a large number of steps, increasing memory us-
age and orthogonalization costs.

The filtered Lanczos procedure applies Lanczos on a
carefully chosen polynomial transformation ρ(.) of A
(see [2] for details). The goals of ρ(.) are:

1. Eigenvalues of A located inside [α, β] are mapped
to the top eigenvalues of ρ(A).

2. Construction of ρ(.) requires minimal knowledge
of Λ(A).

3. Multiplying ρ(A) by a vector is practical.
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CHEBYSHEV POLYNOMIAL FILTERING
A simple and efficient approach for constructing ρ(.)
is to fix a degree m and approximate the step function
I[α,β] by

ρm(z) =
m∑
j=0

bjTj(z),

where Tj denotes the j’th degree Chebyshev polynomial
of the first kind.

For a given α and β the {bj} are known analytically,

bj =

{
(arccos(α)− arccos(β)) /π, j = 0,
2 (sin (j arccos(α))− sin (j arccos(β))) /jπ, j > 0.

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

Chebyshev polynomial approximation in [.1, .3]

ideal filter
Chebyshev, m=20
Chebyshev, m=80
Chebyshev, m=180

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

Chebyshev polynomial approximation in [−1,−.5]

ideal filter
Chebyshev, m=20
Chebyshev, m=80
Chebyshev, m=180

REFERENCES

[1] Jared L. Aurentz, Vassilis Kalantzis, and Yousef Saad.
Cucheb: A GPU implementation of the filtered Lanczos proce-
dure. Submitted.

[2] Haw-Ren Fang, and Yousef Saad. A Filtered Lanczos Pro-
cedure for Extreme and Interior Eigenvalue Problems. SIAM J.
Sci. Comput., 34, A2220-A2246 (2012).


