

UNIVERSITY OF MINNESOTA

Supercomputing Institute

Cucheb**: A GPU IMPLEMENTATION OF THE FILTERED LANCZOS PROCEDURE**

Jared L. Aurentz, Vassilis Kalantzis, and Yousef Saad

is written in CUDA and as of now targets NVIDIA Graphic Processing Units:

⇒ Cucheb implements a non-restarted, filtered block Los procedure using full orthogonalization.

⇒ Matrices are loaded and handled using the CSR It. Sparse (dense) linear algebra is performed SPARSE (cuBLAS).

ser need provide only the matrix and the interval of interest $[\alpha, \beta]$.

https://github.com/jaurentz/cucheb

PERFORMANCE OF Cucheb USING A BLO

Many applications require the computation of all eigenvalues and associated eigenvectors lying inside a real interval $[\alpha, \beta]$ of a large and sparse symmetric matrix $A \in \mathbb{R}^{n \times n}$.

Test matrices: We tested Cucheb on a few Hamiltonians generated using the PARSEC package.

The Lanczos method is an efficient approach when $[\alpha, \beta]$ lies on the periphery of the spectrum, and engages A only through Matrix- Vector products. Lanczos is based on a three-term recurrence:

> **Hardware:** K40m GPU with 11 GB of RAM and 2880 CUDA cores. The host CPU was a Haswell Xeon E5-2680 processor.

In theory, $\{q_1, \ldots, q_{i+1}\}\$ form an orthonormal basis. In practice, orthonormality must be explicitly enforced.

The eigenvalues of A are approximated by those of

 $T_i =$ $\sqrt{\alpha_1}$ $\overline{}$ β_1 β_1 α_2 β_2 β_2 $∴ \alpha_{i-1} \beta_{i-1}$ β_{i-1} α_i \setminus $\overline{}$

where the peripheral eigenvalues of A converge first and the convergence rate is affected by the relative separation.

What if $[\alpha, \beta]$ lies in the interior of the spectrum and/or includes a large number of eigenvalues \rightarrow Lanczos will perform a large number of steps, increasing memory usage and orthogonalization costs.

The filtered Lanczos procedure applies Lanczos on a carefully chosen polynomial transformation $\rho(.)$ of A (see [2] for details). The goals of $\rho(.)$ are:

- 1. Eigenvalues of A located inside $[\alpha, \beta]$ are mapped to the top eigenvalues of $\rho(A)$.
- 2. Construction of $\rho(.)$ requires minimal knowledge of $\Lambda(A)$.
- 3. Multiplying $\rho(A)$ by a vector is practical.

THE FILTERED LANCZOS PROCEDURE

where T_j denotes the j' th degree Chebyshev polynomial of the first kind.

For a given α and β the $\{b_j\}$ are known analytically,

$$
Aq_i = \beta_{i-1}q_{i-1} + \alpha_iq_i + \beta_iq_{i+1}, (q_0 = 0, \beta_1 = 0).
$$

,

CHEBYSHEV POLYNOMIAL FILTERING

A simple and efficient approach for constructing $\rho(.)$ is to fix a degree m and approximate the step function $I_{[\alpha,\beta]}$ by

$$
\rho_m(z) = \sum_{j=0}^m b_j T_j(z),
$$

REFERENCES

- [1] Jared L. Aurentz, Vassilis Kalantzis, and Yousef Saad. *Cucheb: A GPU implementation of the filtered Lanczos procedure*. Submitted.
- [2] Haw-Ren Fang, and Yousef Saad. *A Filtered Lanczos Procedure for Extreme and Interior Eigenvalue Problems*. SIAM J. Sci. Comput., **34**, A2220-A2246 (2012).

