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A PARALLEL ALGORITHM FOR COMPUTING PARTIAL1

SPECTRAL FACTORIZATIONS OF MATRIX PENCILS VIA2

CHEBYSHEV APPROXIMATION∗3

TIANSHI XU† , ANTHONY P. AUSTIN‡ , VASSILIS KALANTZIS§ , AND YOUSEF SAAD¶4

Abstract. We propose a distributed-memory parallel algorithm for computing some of the5
algebraically smallest eigenvalues (and corresponding eigenvectors) of a large, sparse, real symmetric6
positive definite matrix pencil that lie within a target interval. The algorithm is based on Chebyshev7
interpolation of the eigenvalues of the Schur complement (over the interface variables) of a domain8
decomposition reordering of the pencil and accordingly exposes two dimensions of parallelism: one9
derived from the reordering and one from the independence of the interpolation nodes. The new10
method demonstrates excellent parallel scalability, comparing favorably with PARPACK, and does not11
require factorization of the mass matrix, which significantly reduces memory consumption, especially12
for 3D problems. Our implementation is publicly available on GitHub.13

Key word. Symmetric generalized eigenvalue problem, spectral Schur complements, Chebyshev14
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1. Introduction. Several applications in science and engineering require the17

computation of a handful of the algebraically smallest eigenvalues and associated18

eigenvectors of a large, sparse matrix pencil (A,M), where the n× n matrices A and19

M are real symmetric and M is positive-definite. Often, one is provided bounds α20

and β on the eigenvalues of interest, and the goal is then to compute all nev eigenpairs21

of (A,M) that lie within [α, β]. That is, one seeks nontrivial solutions to22

Ax = λMx, λ ∈ [α, β].23

Problems of this sort arise, for instance, in spectral clustering [41] and low-frequency24

response analysis [6, 15].25

Due to the size of modern matrix problems, parallel computing has become an26

integral part of software libraries targeting large-scale eigenvalue computations. In27

many packages (e.g., PARPACK [30, 34], PRIMME [37], BLOPEX [28]), linear algebra ker-28

nels are the main source of parallelism, with operations such as matrix-vector and29

dot products performed in parallel by distributing the data across multiple proces-30

sors. Several recent packages improve scalability by exploiting additional levels of31

parallelism via techniques such as spectrum slicing (pEVSL [31]), rational filtering32

(FEAST/PFEAST [20, 27, 35] and z-Pares [36]), and parallel shift-and-invert meth-33

ods [42, 46]. The SLEPc collection of distributed-memory eigenvalue algorithms [14]34

contains implementations of several of these methods.35
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2 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

Another class of distributed-memory eigenvalue solvers is based on algebraic do-36

main decomposition, also known as algebraic substructuring. In domain decomposi-37

tion, the adjacency graph associated with the pencil (A,M) is partitioned into several38

non-overlapping subgraphs. The eigenvalue problem then decouples into two separate39

tasks: first, one determines the eigenvector components associated with the interface40

variables of the partitioned graph; then, one finds the components associated with41

the interior variables. The second task parallelizes naturally over the subgraphs. For42

more information, see [6, 12, 17, 29, 45] and the references therein.43

1.1. A new parallel algorithm. In this article, we combine the domain decom-44

position approach with Chebyshev function approximation to design a new distributed-45

memory parallel eigensolver. The contributions of our work are:46

1. The algorithm parameterizes the eigenvector components associated with the47

interior and interface variables as univariate, analytic, vector-valued func-48

tions. It then uses the fact that Chebyshev interpolation of these functions49

yields good approximations to the eigenvectors to construct a subspace for50

use with a Rayleigh–Ritz projection scheme. We present theoretical and prac-51

tical details when the interpolation points are Chebyshev nodes of the second52

kind.53

2. The proposed algorithm leverages multi-dimensional parallelism by assigning54

computations associated with different Chebyshev nodes to different proces-55

sor groups and assigning computations associated with different subdomains56

to different processors within each group. Our numerical experiments demon-57

strate that the algorithm achieves higher parallel efficiency than PARPACK on58

distributed-memory systems communicating via the Message Passing Inter-59

face (MPI) [13]. A C++/MPI implementation of the proposed algorithm is60

available publicly at https://github.com/Hitenze/Schurcheb.61

3. In contrast to previous work on domain decomposition eigensolvers, the pro-62

posed algorithm requires the computation of neither derivatives of eigenvec-63

tors [18] nor a large number of eigenvectors of linearized spectral Schur com-64

plements [5, 6]. Moreover, unlike branch-hopping domain decomposition al-65

gorithms, which compute eigenvalues one at a time [19, 21], the proposed66

algorithm introduces model parallelism in addition to data parallelism by67

approximating all sought eigenvalues simultaneously via Rayleigh–Ritz pro-68

jection. Unlike approaches based on the Lanczos algorithm, the proposed69

algorithm does not require a distributed-memory factorization of A or M ;70

therefore, it is not limited by the efficiency of distributed-memory triangular71

solves. Finally, in contrast to most rational filtering techniques, especially72

those based on discretizations of complex contour integrals [22, 23], the pro-73

posed algorithm does not evaluate functions at complex values and therefore74

does not require complex arithmetic.75

1.2. Notation and roadmap. Throughout the paper, we denote the set of76

eigenvalues of a general pencil (K,F ) by Λ(K,F ) and the eigenpairs of the specific77

pencil (A,M) by
(
λi, x

(i)
)
, i = 1, . . . , n, ordered algebraically: λ1 ≤ · · · ≤ λn.78

Given bounds α and β such that α < λ1, our aim is to compute all nev eigenpairs of79

(A,M) that lie in [α, β], i.e., the nev algebraically smallest eigenvalues of A and their80

corresponding eigenvectors. Finally, we denote by Ran(K) and Ker(K) the range and81

kernel of a matrix K and by span{v1, . . . , vk} the linear span of vectors v1, . . . , vk.82
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Fig. 2.1: A 4-way partitioning of a 6×6 discretized domain obtained from an edge separator.
The four colors distinguish the four different subdomains. Solid-colored nodes correspond to
interior variables. Nodes with a gray background correspond to interface variables. Solid
lines correspond to edges between vertices of the same partition. Dashed lines correspond to
edges between vertices of neighboring partitions

This paper is organized as follows. Section 2 presents background on algebraic83

graph partitioning and domain decomposition. Section 3 shows how the eigenvectors84

of (A,M) can be identified as values of certain univariate, vector-valued functions and85

discusses how they can be approximated by Rayleigh–Ritz projection onto a subspace86

formed via Chebyshev approximation. Section 4 discusses the distributed-memory87

implementation of the proposed algorithm on 2D grids of MPI processes. Section 588

showcases the performance of the proposed algorithm using numerical experiments89

performed in both sequential and distributed-memory computing environments. Fi-90

nally, Section 6 presents our concluding remarks.91

2. Domain decomposition variable ordering. Let G = (V, I) be a simple92

undirected graph with vertex set V and edge set I. A p-way edge separator is a subset93

Is ⊆ I whose removal from I divides the vertices of the graph G into p ∈ N non-94

overlapping sets V1, . . . ,Vp such that the induced subgraphs G1 = (V1, I1), . . . ,Gp =95

(Vp, Ip) are disjoint. We refer to the induced subgraphs variously as subdomains,96

substructures, or partitions. A vertex is called an interface vertex if it is incident to97

an edge in Is and an interior vertex otherwise.98

Applied to graphs derived from matrices, edge separators are commonly used99

in parallel computing to achieve load balancing during the execution of distributed-100

memory linear algebra kernels. In this context, the induced subgraphs ideally have101

similar numbers of vertices and edges, while the size (cardinality) of the separator102

set is kept to a minimum. Finding the “best” edge separator is an NP-hard prob-103

lem. In practice, one relies on heuristics, such as the algebraic partitioning strategies104

implemented in the popular METIS and ParMETIS packages [24, 25].105

To a symmetric matrix pencil (A,M) of dimension n, we associate a graph GA,M106

in the usual way, taking V = {1, . . . , n} for the vertex set and I = {(i, j) | Ai,j 6=107
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0 or Mi,j 6= 0} for the edge set. Thinking of the eigenvalue equation Ax = λMx as108

a set of n linear equations in the components of x (one for each row of the system),109

the vertices correspond to the n unknown variables in the vector x, and the graph110

GA,M has an edge connecting vertices i and j if the variable xj appears in the ith111

equation. A p-way edge separator for GA,M groups the variables into p disjoint sets112

or subdomains. Interface vertices correspond to variables that are coupled (via equa-113

tions) with variables from multiple subdomains, while interior vertices correspond to114

variables that are coupled only with other variables from the same subdomain. Figure115

2.1 illustrates this for a 4-way partitioning of a graph that models a 6×6 regular grid.116

Having partitioned GA,M , we reorder the variables, listing all interior variables117

first, grouped by in order by subdomain, followed by the interface variables, also118

grouped by subdomain. Let P be the permutation matrix that effects this reordering.119

Under P , the matrices A and M are reordered into a pair of structured block matrices:120

(2.1)

PTAP =




B1 E1

B2 E2

. . .
. . .

Bp Ep
ET1 C1,1 C1,2 · · · C1,p

ET2 C2,1 C2,2 · · · C2,p

. . .
...

...
. . .

...
ETp Cp,1 Cp,2 · · · Cp,p




PTMP =




MB1 ME1

MB2
ME2

. . .
. . .

MBp MEp

MT
E1

MC1,1
MC1,2

· · · MC1,p

MT
E2

MC2,1 MC2,2 · · · MC2,p

. . .
...

...
. . .

...
MT
Ep

MCp,1 MCp,2 · · · MCp,p




.

121

To provide more detail, let di and si denote, respectively, the numbers of interior122

and interface variables belonging to the ith domain. The matrices Bi and MBi are of123

size di × di and represent the coupling between the interior variables within the ith124

subdomain. The matrices Ei and MEi are of size di × si and represent the coupling125

between the interior and interface variables of the ith subdomain. Finally, the matrices126

Ci,j and MCi,j are of size si × sj and represent the coupling between the interface127

variables of the ith subdomain and those of the jth subdomain. If the ith and jth128

subdomains do not neighbor one another, Ci,j = MCi,j = 0. Since A and M are129

symmetric, Cj,i = CTi,j and MCj,i = MT
Ci,j

.130

Our algorithm makes essential use of the structure of this reordering of A and M .131

For the remainder of the paper, we assume that A and M have been so reordered and132

suppress mention of the permutation P . We write A and M in 2× 2 block form as133

(2.2) A =

[
B E
ET C

]
, M =

[
MB ME

MT
E MC

]
,134

with the blocks being defined in the obvious way to conform to the structure just135

described. Finally, we define d = d1 + · · ·+dp and s = s1 + . . .+sp, the total numbers136
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of interior and interface variables, respectively. Thus, the matrices B and MB are137

d× d, E and ME are d× s, and C and MC are s× s. Of course, d+ s = n.138

3. A parallel algorithm based on Chebyshev approximation. Our algo-139

rithm is based on the fact that the eigenvalues and eigenvectors of the matrix A−ζM140

are analytic functions of ζ ∈ C (vector-valued in the case of the latter). By definition,141

if ζ = λi is an eigenvalue of the pencil (A,M), then A− ζM is singular, and its null142

vectors are the eigenvectors for (A,M) corresponding to λi. By continuity, if ζ is close143

(but not equal) to λi, then A− ζM will be “nearly singular” in the sense that it will144

have one or more eigenvalues that are small in magnitude, and the eigenvectors of145

A−ζM corresponding to these eigenvalues will be good approximations to null vectors146

of A−λiM . On this basis, our algorithm approximates the eigenvectors corresponding147

to the smallest eigenvalues of A− ζiM at several points ζi within the search interval148

[α, β] using a Schur complement technique. By choosing the ζi well, we can guarantee149

that the subspace spanned by these “near-null” vectors contains good approximations150

to the eigenvectors of (A,M). The algorithm extracts such approximations from this151

subspace via Rayleigh–Ritz projection.152

3.1. Spectral Schur complements. To make this process efficient and paral-153

lelizable, we exploit the block structure of A and M induced by the variable reordering154

discussed in the previous section. Partition the eigenvector x(i) associated with the155

eigenvalue λi of (A,M) as156

x(i) =

[
u(i)

y(i)

]
,157

where u(i) ∈ Rd and y(i) ∈ Rs, conforming to the partitioning of A and M in (2.2),158

and define159

(3.1) B(ζ) = B − ζMB , E(ζ) = E − ζME , C(ζ) = C − ζMC ,160

for ζ ∈ C. In this notation, the eigenvector equation (A− λiM)x(i) = 0 becomes161

(3.2)

[
B(λi) E(λi)
ET (λi) C(λi)

] [
u(i)

y(i)

]
= 0.162

Under the mild assumption that B(λi) is invertible, i.e., that λi /∈ Λ(B,MB), we can163

eliminate the ET (λi) block in the second row, yielding164

(3.3)
[
C(λi)− ET (λi)B(λi)

−1E(λi)
]
y(i) = 0.165

That is, the s× 1 bottom part y(i) of the eigenvector x(i) is a null vector of the Schur166

complement C(λi) − ET (λi)B(λi)
−1E(λi). Having found y(i), one can recover the167

corresponding top part u(i) via168

(3.4) u(i) = −B(λi)
−1E(λi)y

(i),169

which requires the solution of a d× d block diagonal linear system.170

What if λi ∈ Λ(B,MB)? This case would seldom occur in practice, but we can171

come to understand it by writing u(i) = u
(i)
P + u

(i)
N , where u

(i)
P ∈ Ran

(
B(λi)

)
and172

u
(i)
N ∈ Ker

(
B(λi)

)
. In place of (3.4), the first block equation in (3.2) yields173

(3.5) u
(i)
P = −B(λi)

+E(λi)y
(i),174
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6 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

where B+(λi) is the (Moore–Penrose) pseudoinverse of B(λi). From this and the175

second block equation in (3.2), we obtain176

(3.6) E(λi)
Tu

(i)
N +

[
C(λi)− ET (λi)B(λi)

+E(λi)
]
y(i) = 0177

instead of (3.3).178

If it happens that Ran
(
E(λi)

)
⊥ Ker

(
B(λi)

)
, so that the first term in (3.6)179

vanishes, then the eigenvectors can be found in a manner analogous to the case180

when λi /∈ Λ(B,MB) but with B(λi)
−1 replaced by B(λi)

+. Specifically, one can181

take y(i) from among the null vectors of the Schur-complement-like matrix C(λi) −182

ET (λi)B(λi)
+E(λi) and then recover u

(i)
P from (3.5). The component u

(i)
N can be183

taken arbitrarily from Ker
(
B(λi)

)
(i.e., from among the eigenvectors of (B,MB)184

corresponding to the eigenvalue λi). We thus obtain an eigenspace of dimension185

dim Ker
(
C(λi)−ET (λi)B(λi)

+E(λi)
)

+ dim Ker
(
B(λi)

)
. More generally, given u

(i)
N ,186

one can solve (3.6) for y(i) and then leverage (3.5) to find u
(i)
P . Unfortunately, an187

easy way to compute u
(i)
N does not appear to exist, and even if one did, forming and188

factoring C(λi)− ET (λi)B(λi)
+E(λi) would still be prohibitively expensive.189

It is better simply to avoid the case λi ∈ Λ(B,MB) to begin with. This can190

be done by adjusting the partitioning until no eigenvalues of (B,MB) lie within the191

search interval [α, β]. As the likelihood of this being necessary is already small—in192

particular, we did not need to do this in any of the numerical experiments reported193

below—we will not attempt to develop a comprehensive strategy here, leaving this as194

a potential matter for future work.195

3.2. Chebyshev approximation of eigenvector components. We have thus196

reduced the problem to that of finding those values ζ in [α, β] for which the parame-197

terized spectral Schur complement [5, 19],198

(3.7) S(ζ) = C(ζ)− ET (ζ)B(ζ)−1E(ζ),199

is singular, assuming that no eigenvalue of (A,M) within [α, β] is also an eigenvalue200

of (B,MB). For ζ /∈ Λ(B,MB), let µ1(ζ), . . . , µs(ζ) and y1(ζ), . . . , ys(ζ) denote the201

eigenvalues and corresponding eigenvectors of S(ζ), respectively:202

S(ζ)yi(ζ) = µi(ζ)yi(ζ), i = 1, . . . , s.203

The µi and yi can be defined such that they are analytic functions of ζ ∈ C away204

from Λ(B,MB). At each point of Λ(B,MB), they have at most a pole singularity205

[21, 26, 33, 39]. We refer to the µi as the eigencurves of S. We also define206

ui(ζ) = −B(ζ)−1E(ζ)yi(ζ), i = 1, . . . , s,207

which is also analytic in ζ away from Λ(B,MB).208

The matrix S(ζ) is singular precisely when one of its eigenvalues is zero: µi(ζ) = 0209

for some i. The following result asserts that each of the nev ≤ s eigenvalues of (A,M)210

in [α, β], counted according to multiplicity, occurs as a zero of one and only one µi.
1211

Moreover, the top and bottom parts of the corresponding eigenvectors are given by212

the values of ui and yi at that zero. The assumption that β < min
(
Λ(B,MB)

)
ensures213

that [α, β] is free of any poles of S and that the eigencurves are strictly decreasing214

[21]. The assumption that nev ≤ s ensures that the dimension of the space in which215

we plan to search is large enough to contain all the eigenvectors we seek.216

1For eigenvalues of non-unit multiplicity, this statement is to be interpreted as saying that there
is a distinct µi associated with each copy of the eigenvalue.
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Proposition 3.1. Assume β < min
(
Λ(B,MB)

)
, and nev ≤ s. Then, there exist217

nev distinct integers κ1, . . . , κnev
∈ {1, 2, . . . , s} such that218

(3.8) µκi(λi) = 0, y(i) = yκi(λi), u(i) = uκi(λi).219

Proof. First, consider the case in which the λi are all simple eigenvalues. Fol-220

lowing (3.3), we have S(λi)y
(i) = 0 for some y(i) 6= 0. The matrix S(λi) is singular221

and has exactly one zero eigenvalue, denoted by µκi(λi), for some 1 ≤ κi ≤ s. The222

expressions in (3.8) follow directly. It remains to show that κi 6= κj when i 6= j.223

By (3.7), the function S—and, by extension, each eigencurve µκi—has a singular-224

ity (a pole) at each eigenvalue of (B,MB) and nowhere else. Since β < min
(
Λ(B,MB)

)
,225

it follows that the µκi are free of singularities on [α, β]. Differentiating the Rayleigh226

quotient µκi(ζ) = yTκi(ζ)S(ζ)yκi(ζ)/‖yκi(ζ)‖2, we find that µ′κi(ζ) < 0 on [α, β] [21,227

Proposition 3.1]. Hence, the µκi are strictly decreasing on [α, β], which implies that228

λi is the only root of µκi in [α, β].229

That the result also holds in the case where one or more of the λi have non-unit230

multiplicity can be seen by considering arbitrarily small perturbations of (A,M) that231

have all simple eigenvalues and appealing to continuity.232

We lose no generality in assuming that κi = i, and we will do so throughout the233

rest of the paper: from this point forward, µi will denote the eigencurve of S that234

crosses the real axis at λi.235

Proposition 3.1 tells us that the components u(i) and y(i) of a sought eigenvector236

x(i) are equal to yi(λi) and ui(λi), respectively. Since both yi(ζ) and ui(ζ) are analytic237

on [α, β], they can be approximated accurately by interpolation at Chebyshev nodes.238

Specifically, for an integer N ≥ 1, let239

(3.9) χj =
α+ β

2
+ cos

(
jπ

N − 1

)
β − α

2
, j = 0, . . . , N − 1,240

be the N Chebyshev nodes of the second kind in [α, β],2 and let `j denote the jth241

Lagrange basis function for polynomial interpolation in these nodes. That is, `j is242

the unique polynomial of degree N − 1 such that `j(χk) is 1 if k = j and 0 if k 6= j.243

Finally, let Eρ be the Bernstein ellipse centered on [α, β] with parameter ρ; that is,244

Eρ is the open subset of C bounded by the ellipse with foci at α and β and sum of245

the lengths of its semimajor and semiminor axes equal to ρ. Since yi(ζ) and ui(ζ) are246

analytic on [α, β], they can be analytically continued to Eρ for some ρ > 0. We have:247

Proposition 3.2. Assume that β < min
(
Λ(B,MB)

)
, that nev ≤ s, and that ui248

and yi are analytic in Eρ for all i = 1, . . . , nev and some ρ > 0. For each i, there249

exists w(i) ∈ RN such that250

x(i) =

[
u(i)

y(i)

]
=

[
ui(χ0) · · · ui(χN−1)
yi(χ0) · · · yi(χN−1)

]
w(i) +O(ρ−N ).251

Proof. Let w
(i)
j = `j(λi) for j = 0, . . . , N − 1. Then, the top d (respectively,252

bottom s) components of the matrix-vector product give the value at λi of the poly-253

nomial interpolant to u(i) (respectively, y(i)) in the Chebyshev nodes χj . The result254

now follows from a standard theorem on the convergence of Chebyshev interpolants255

to analytic functions [40, Theorem 8.2].256

2For N = 1, we take χ0 = (α+ β)/2.
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8 T. XU, A. P. AUSTIN, V. KALANTZIS, AND Y. SAAD

Instead of interpolating ui and yi directly, we use their samples at the Chebyshev257

nodes to generate a subspace in which to look for approximations to the x(i). This258

approach eliminates the need to keep track of the association between the samples259

and the eigencurves, which may be difficult if the eigencurves cross.3 Proposition 3.2260

ensures that this subspace contains good approximations to the x(i) for large enough261

N . We can express this fact as a statement about the angle between this subspace262

and the sought eigenspace:263

Corollary 3.3. Let X = span{x(1), . . . , x(nev)}, and let264

R = span

{[
u1(χ0)
y1(χ0)

]
, . . . ,

[
u1(χN−1)
y1(χN−1)

]
, . . . ,

[
unev

(χ0)
ynev

(χ0)

]
, . . . ,

[
unev

(χN−1)
ynev

(χN−1)

]}
.265

Then,266

sin θ(X ,R) = O(ρ−N ),267

where θ(X ,R) is the largest principal angle between X and the closest subspace of R268

to X with the same dimension as X .269

Proof. The quantity sin θ(X ,R) is known as the gap between X and R and can270

be expressed as [3] [26, sect. IV.2.1] [38, sect. II.4]271

sin θ(X ,R) = max
x∈X

min
r∈R
‖x− r‖
‖x‖ .272

The result follows immediately from this formula and Proposition 3.2.273

3.3. A parallel algorithm. Our algorithm builds the subspace R of Corollary274

3.3 and then uses Rayleigh–Ritz projection to extract approximations to the x(i) from275

R. The procedure is summarized in Algorithm 3.1.276

For each Chebyshev node χj , Algorithm 3.1 computes the eigenvectors associated277

with the nev algebraically smallest eigenvalues of S(χj). These eigenvectors form the278

s×nev matrix Yj (step 9). Then, the algorithm computes the matrix Vj , which requires279

the solution of a linear system with the coefficient matrix B(χj) and nev right-hand280

sides (step 10). Finally, the algorithm uses Rayleigh–Ritz projection (steps 15–16) to281

approximate the sought eigenpairs of (A,M). The dimension of the projected pencil is282

at most Nnev, and the associated eigenvalue problem is solved by a dense, symmetric283

eigenvalue solver.284

The for loop in steps 7–11 is embarrassingly parallel: each matrix pair (Yj , Vj)285

can be computed independently of the other pairs. The computation of Vj can be286

further decomposed into the solution of p independent linear systems. Partition Vj287

and Yj by rows as288

Vj =



V1,j

...
Vp,j


 , Yj =



Y1,j

...
Yp,j


 ,289

290

3For example, it can happen that µ2(χj) < µ1(χj) < µ3(χj) < · · · < µs(χj) for some j. If so,
the eigenvector of S(χj) corresponding to its smallest eigenvalue is a sample of y2(χj), not y1(χj),
even though µ1 is the eigencurve for the smallest eigenvalue of (A,M).
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Algorithm 3.1 The proposed algorithm.

1: Input: A ∈ Rn×n, M ∈ Rn×n, N ∈ N, α ∈ R, β ∈ R, nev ∈ Z, Y = 0, V = 0
2: Output: approximations of eigenpairs

(
λi, x

(i)
)
, i = 1, . . . , nev

3: /* Pre-processing: reorder matrices A and M */
4: . Call a p-way edge separator to partition the graph GA,M .
5: . If β < min

(
Λ(B,MB)

)
continue, else set p := 2p and repeat step 4.

6: /* Main loop; embarrassingly parallel over the N Chebyshev nodes */
7: for j = 0, . . . , N−1 do

8: . Set χj =
α+ β

2
+ cos

(
jπ

N − 1

)
β − α

2
.

9: . Set Yj = [y1(χj), . . . , ynev(χj)].
10: . Solve B(χj)Vj = −E(χj)Yj .
11: end for

12: /* Rayleigh-Ritz projection phase */

13: . Set R =

[
V0 · · · VN−1
Y0 · · · YN−1

]
.

14: . Optionally, orthonormalize the columns of R.
15: . Compute the nev algebraically smallest eigenvalues and associated eigenvectors

of the eigenvalue problem (RTAR)f = θ(RTMR)f .
16: . Return (θi, PRf

(i)) ≈
(
λi, x

(i)
)
, i = 1, . . . , nev.

where Vk,j and Yk,j are associated with the kth subdomain. Then,291



B1(χj)

. . .

Bp(χj)






V1,j

...
Vp,j


 =



E1(χj)Y1,j

...
Ep(χj)Yp,j


292

293

(where we have extended the notation (3.1) to the blocks comprising B, MB , E, and294

ME in the obvious way), and so the Vk,j can be computed by solving295

Bk(χj)Vk,j = −Ek(χj)Yk,j , k = 1, . . . , p.296

These p linear systems can be solved in parallel.297

3.4. Practical details. A practical implementation of Algorithm 3.1 will need298

to account for certain details, some of which may include the following:299

• If the desired number nev of eigenvalues is not known a priori, it can be com-300

puted directly by decomposing A−αM and A−βM in LDLT factorizations301

and using Sylvester’s law of inertia [7]. Alternatively, if this is too expensive,302

one can estimate nev using a spectral density profile of (A,M) [44]. To re-303

duce the chance of the algorithm missing eigenvalues, we recommend taking304

nev slightly larger than estimated or required. To further reduce this chance,305

one can apply a few steps of subspace iteration or Lanczos with polynomial306

filtering and deflation as post-processing after step 16. Since the number307

of iterations needed should not be large, one can use iterative methods to308

approximate M−1 instead of exact factorizations.309
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• The results of section 3.2 relied on the hypothesis β < min
(
Λ(B,MB)

)
. How310

can we enforce this requirement in practice? This is difficult and may even be311

impossible for certain special classes of matrices. Nevertheless, we find em-312

pirically that, for a general problem, this is not likely to be an issue provided313

β is not excessively large. Should it happen that this condition is violated,314

we also find empirically that the situation frequently can be repaired simply315

by increasing p, i.e., by further partitioning the graph into a greater number316

of subdomains. Algorithm 3.1 therefore adopts the practical strategy of dou-317

bling p until β < min
(
Λ(B,MB)

)
is satisfied (step 5). But we observe that318

this was not required in any of the many tests described in Section 5.319

• Algorithm 3.1 is a “one-shot” method in the sense that if the accuracy of the320

approximate eigenpairs is not satisfactory, then the whole process must be321

repeated with a higher value of N . We find that in practice, N = 8 reaches322

nearly the maximum attainable accuracy on a wide range of problems; see323

Section 5. If one wishes to apply Algorithm 3.1 for several values of N , it324

is beneficial to take these N to have the form N(k) = 2k + 1 for integers k.325

Having run the algorithm with N = N(k), one can reduce the computational326

cost of running the algorithm with N = N(k + 1) by exploiting the fact that327

the nodes (3.9) for N(k) are a subset of those for N(k + 1) and reusing the328

samples taken during the N = N(k) run.329

• Besides increasing N , one can also improve the accuracy of one or more of the330

eigenpairs by using the approximate eigenvectors obtained from Algorithm 3.1331

as the initial subspace for an implicitly-restarted (or thick-restarted) Lanczos332

method [8, 43] applied to (A,M). This technique can also be used to ensure333

that all nev eigenpairs of (A,M) have been computed (i.e., none have been334

missed) by checking to see if the algebraically smallest eigenvalue returned335

by the restarted Lanczos method is smaller than β.336

4. A distributed-memory implementation. We now describe our parallel337

implementation of Algorithm 3.1 based on the MPI standard. Throughout this dis-338

cussion, we assume a distributed-memory computing environment with Np = prpc339

MPI processes organized in a pr×pc 2D MPI grid. In addition to the default commu-340

nicator MPI COMM WORLD, we denote by Gri , i = 0, . . . , pr−1, and Gcj , j = 0, . . . , pc−1,341

the MPI communicators associated with the ith row and jth column of the grid,342

respectively.343

Our parallel implementation utilizes the row dimension of the grid for domain344

decomposition data parallelism (i.e., distributed storage of A and M) and the column345

dimension of the grid for model parallelism (i.e., distribution over the N Chebyshev346

nodes). Therefore, the row and column dimensions of the grid satisfy the inequalities347

pr ≤ p and pc ≤ N , respectively.348

4.1. Data distribution on 2D MPI grids. First, we consider the data dis-349

tribution along the row dimension of the grid. For each communicator Gcj , j =350

0, . . . , pc − 1, we distribute A and M such that the pr MPI processes associated with351

Gcj hold a unique subset of the partitions of the graph GA,M . In particular, let p be352

a scalar multiple of pr, and set τ = p/pr. Then, the ith process is assigned data353
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associated with partitions iτ + 1, iτ + 2, . . . , (i+ 1)τ , i.e.,354

Data held by process i of Gcj:





Biτ+1, . . . , B(i+1)τ ,MBiτ+1 , . . . ,MB(i+1)τ

Eiτ+1, . . . , E(i+1)τ ,MEit+1
, . . . ,ME(i+1)τ

Ciτ+1,:, . . . , C(i+1)τ,:,MCiτ+1,:
, . . . ,MC(i+1)τ,:

,355

where the subscript “:” represents all column indices of matrices C and MC . Or-356

dering the unknowns/equations by increasing MPI rank leads to the following global357

representation of A (and similarly for M):358

(4.1) A =




B1 E1

ET1 C1,1 C1,2 C1,pr

B2 E2

C2,1 ET2 C2,2 C2,pr

. . .

Bpr Epr
Cpr,1 Cpr,2 ETpr Cpr,pr




.359

The ordering in (4.1) is more natural from the perspective of parallel computing than360

that in (2.1), which is more natural for discussing the linear algebra.361

We now focus on the column dimension of the grid. Let N be a scalar multiple362

of pc, and set η = N/pc. We distribute the N Chebyshev nodes across the pc MPI363

processes of each row communicator Gri , i = 0, . . . , pr−1, such that each process364

receives exactly η unique Chebyshev nodes. In particular, the jth process associated365

is assigned the Chebyshev node(s) χjη+1, . . . , χ(j+1)η j = 0, . . . , pc−1. From a parallel366

efficiency perspective, it is advisable to exhaust parallelism across the N Chebyshev367

nodes first, by setting pc = N , since this level of parallelism involves no communication368

among groups of processes assigned different Chebyshev nodes.369

An illustration of the data distribution on a 2D MPI grid with Np = 16 processes370

and N = 8 Chebyshev nodes is shown in Figures 4.1 and 4.2 where the dimensions371

of the grid are (pr, pc) = (4, 4) and (pr, pc) = (2, 8), respectively. For (4, 4) case we372

have pc < N , and each column subgrid is responsible for processing h = 8/4 = 2373

Chebyshev nodes, while the computation of each matrix pair (Yj , Vj) exploits four374

MPI processes. Contrast this with the (2, 8) case, in which each separate column375

subgrid handles exactly one Chebyshev node (η = 1), leading to trivial parallelism376

with respect to the N Chebyshev nodes, but the computation of each matrix pair377

(Yj , Vj) utilizes just two processes.378

4.2. Computation of Yj via PARPACK. Our implementation computes the eigen-379

vectors of the Schur complement matrices S(χj), j = 0, . . . , N − 1, via the PARPACK4380

software library, a distributed-memory implementation of ARPACK [30]. The main381

distributed-memory kernels of PARPACK are: (a) orthogonalization of the Krylov basis,382

and (b) a user-defined routine that performs distributed matrix-vector multiplication383

with S(χj).384

Regarding (a), consider first the case pc = N . Orthonormalizing the basis vec-385

tors computed on each m-step cycle of the implicitly restarted Arnoldi method via386

Gram–Schmidt costs O(sm2) floating-point operations and O
(
log(pr)m

2
)

point-to-387

point MPI messages. This communication cost increases proportionally with the388

4https://github.com/opencollab/arpack-ng
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Fig. 4.1: Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with Np = 16,
N = 8, and (pr, pc) = (4, 4). The distribution of M is identical to that of A.
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Fig. 4.2: Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with Np = 16,
N = 8, and (pr, pc) = (2, 8). The distribution of M is identical to that of A.

number of Chebyshev nodes processed by each column subgrid. In particular, when389

pc = 1, i.e., all available Np MPI processes are assigned to the default communicator,390

PARPACK requires O
(
N log(Np)m

2
)

MPI messages just for Gram–Schmidt.391

As for (b), note that the product between the distributed matrix S(χj) and a392

distributed vector f =
[
fT1 · · · fTp

]T ∈ Rs can be written as393

(4.2) S(χj)f =




∑
k∈N1

C1,k(χj)fk

...∑
k∈Np

Cp,k(χj)fk



−



B1(χj)

−1E1(χj)f1
...

Bp(χj)
−1Ep(χj)fp


 ,394

where Ni denotes the list of partitions adjacent to partition i (and where we have395

extended the notation (3.1) to the blocks of A − ζM defined by (4.1) in the obvious396

way). Due to the partitioning, the second term on the right-hand side of (4.2) can be397

computed in an embarrassingly parallel manner. On the other hand, the first term of398

the right-hand side of (4.2) requires point-to-point communication between processes399

handling neighboring partitions.400

4.3. Orthonormalization of the Rayleigh–Ritz basis. Our implementation401

orthonormalizes the columns of the Rayleigh–Ritz projection matrix R via Gram–402

This manuscript is for review purposes only.



PARALLEL EIGENSOLVER VIA CHEBYSHEV APPROXIMATION 13

Schmidt. To take advantage of all Np MPI processes, we exploit the default commu-403

nicator MPI COMM WORLD.404

The (i, j) process of the pr × pc 2D MPI grid holds the submatrices Vi,j and Yi,j ,405

leading to the following representation of R as a 2D logical array:406

R̂2D =

Gc
0 Gc

1 · · · Gc
pc−1






[
V0,0
Y0,0

] [
V0,1
Y0,1

]
· · ·

[
V0,pc−1
Y0,pc−1

]
Gr

0

...
...

...
...

...[
Vpr−1,0
Ypr−1,0

] [
Vpr−1,1
Ypr−1,1

]
· · ·

[
Vpr−1,pc−1
Ypr−1,pc−1

]
Gr

pr−1

.407

The goal is to transform R̂2D into a n×Nnev matrix R1D such that each one of the Np408

processes holds a submatrix that has roughly n/Np rows and Nnev columns. This can409

be achieved by the following two-step procedure. First, we perform a gather reduction410

on the submatrices
[
V Ti,j Y Ti,j

]T
, j = 0, . . . , pc − 1. This reduction is performed411

independently within each communicator Gri , i = 0, . . . , pr − 1. Second, each process412

associated with Gri discards all rows of the previously reduced matrix except for a413

unique, contiguous set of rows. We can then write414

(4.3) R1D =




V0,0 · · · V0,pc−1
Y0,0 · · · Y0,pc−1

... · · ·
...

... · · ·
...

Vpr−1,0 · · · Vpr−1,pc−1
Ypr−1,0 · · · Ypr−1,pc−1




=




R0,0

...
R0,pc−1

...
Rpr−1,0

...
Rpr−1,pc−1




,415

where Ri,j is held by the MPI process of rank ipc+j associated with MPI COMM WORLD,416

i.e., the jth process associated with the row communicator Gri . This can be done417

efficiently in a single line of code by calling MPI Alltoall independently within each418

communicator Gri , i = 0, . . . , pr−1. A graphical illustration of this 2D-to-1D grid419

remapping is shown in Figure 4.3.420

Once the remapping is complete, we apply distributed block Gram–Schmidt to421

the columns of R1D using MPI COMM WORLD and a block size equal to nev. Then, we422

map R1D back to the 2D layout by reversing the above procedure. For further details423

on parallel Gram–Schmidt, including a discussion of numerical stability, see [4, 9].424

4.4. Formation and solution of the projected eigenvalue problem. Fi-425

nally, we form the projected pencil (RTAR,RTMR) and find its eigenvalues. As the426

projected pencil is small, once it is formed, we compute its eigenvalues serially us-427

ing the DSYGVX routine from LAPACK [2]. The remainder of this section is devoted to428

discussing our approach to forming RTAR within the 2D distributed-memory data429

layout described above. The procedure for forming RTMR is identical.430

We form RTAR in two phases. Let Rj =
[
V Tj Y Tj

]T
. In the first phase, we431

compute AR =
[
AR0 AR1 · · · ARN−1

]
. When pc = N , this operation is embar-432

rassingly parallel, since each of the products ARj , j = 0, . . . , N − 1, can be computed433
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Fig. 4.3: 2D-to-1D (and vice-versa) MPI grid mapping. Left: color/pattern layout of a
2D grid of MPI processes with pc = pr = 4. Right: color/pattern layout of the same grid
collapsed in 1D MPI grid topology.

independently. Using the rank-based representation of A from (4.1), we write434

(4.4) ARj =




B1 E1

ET1 C1,1 C1,2 C1,pr

B2 E2

C2,1 ET2 C2,2 C2,pr

. . .

Bpr Epr
Cpr,1 Cpr,2 ETpr Cpr,pr







V0,j
Y0,j
V1,j
Y1,j

...
Vpr−1,j
Ypr−1,j




.435

Communication between different MPI processes of Gcj is point-to-point, and the ith436

process needs to send Yi,j to the kth process if and only if Ck,i 6= 0.437

The second phase multiplies RT and AR and stores the matrix product in the438

root process of MPI COMM WORLD. To achieve this, we apply the following procedure,439

which is illustrated in Figure 4.4:440

1. Apply MPI Allgather on the submatrices [ARj ]i, j = 0, . . . , pc − 1, across441

the row communicator Gri , where [ARj ]i denotes the submatrix of ARj held442

by the ith process. Each process associated with Gri then has its own copy443

of the matrix
[
[AR0]i [AR2]i · · · [ARpc−1]i

]
.444

2. The ith process associated with the column communicator Gcj then computes445

Zi,j = RTi,j
[
[AR0]i [AR2]i . . . [ARpc−1]i

]
and calls MPI Reduce on the446

data Zi,j associated with the processes in Gcj .447

3. At the end of the previous step, the kth MPI process associated with Gr0448

holds the kth block of rows of the matrix RTAR. Finally, all processes in Gr0449

call MPI Gather, creating RTAR in the root process.450

5. Numerical experiments. We now illustrate the performance of Algorithm451

3.1 in both sequential and distributed-memory computing environments. We per-452
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MPI Allgather

Step 1

MPI Reduce

Step 2

MPI Gather

Step 3

Fig. 4.4: Communication pattern for the distributed-memory computation of RTAR and
RTMR using our 2D MPI data layout (pr = pc = 4). The root process of MPI COMM WORLD

is located in the upper-left corner.

formed our experiments on the Minnesota Supercomputing Institute’s Mesabi cluster.453

Each node of Mesabi is equipped with 64 GB of system memory and two 12-core 2.5454

GHz Intel Xeon E5-2680v3 (Haswell) CPUs. We built our code with the Intel ICC455

18.0.0 compiler. We used the Intel Math Kernel Library (MKL) for basic matrix op-456

erations, including its sparse matrix routines and its implementation of the standard457

BLAS and LAPACK libraries for sequential dense matrix operations. While it is possible458

to exploit shared-memory parallelism, the experiments described below use just one459

thread per MPI process.460

To compute the nev sought eigenvectors of the spectral Schur complements S(χj),461

we used PARPACK with full orthogonalization and restart dimension m = 2nev. The462

linear systems involving the block-diagonal matrix B(χj) were solved with the Intel463

MKL implementation of the PARDISO solver. For the search interval [α, β], we set464

α = 0, β = (λnev
+ λnev+1)/2 in all experiments.465

5.1. Numerical illustration. We first demonstrate the qualitative performance466

of Algorithm 3.1 on a set of four small problems:467

• “APF4686,” a standard eigenvalue problem of dimension n = 4,686 generated468

by the ELSES quantum mechanical nanomaterial simulator5 [16],469

• “Kuu/Muu,” a generalized eigenvalue problem of dimension n = 7,102 from470

the SuiteSparse matrix collection6 [10],471

• “FDmesh,” a standard eigenvalue problem generated by a regular 5-point472

finite difference discretization of the Laplacian on a square, and473

• “FEmesh,” a generalized eigenvalue problem obtained by discretizing the474

Laplacian on a square with linear finite elements.475

For the latter two, the discretization fineness was chosen to yield matrices of dimension476

n ≈ 20,000, and the associated pencils have several eigenvalues of multiplicity 2.477

Figure 5.1 plots the relative errors in the eigenvalues returned by Algorithm 3.1478

and the corresponding residual norms for the problems “APF4686” (left, nev = 30)479

and “Kuu/Muu” (right, nev = 100) for N = 2, 4, 6, 8. Figure 5.2 plots the same480

quantities for “FDmesh” (left) and “FEmesh” (right), where nev = 100 in both cases.481

In agreement with the discussion in Section 3, increasingN leads to greater accuracy in482

5http://www.elses.jp
6https://sparse.tamu.edu/
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Fig. 5.1: Relative errors in the eigenvalues returned by Algorithm 3.1 (top) and corresponding
residual norms (center) for various values of N for the problems “APF4686” (left, nev = 30)
and “Kuu/Muu” (right, nev = 100). The bottom two figures plot the maximum relative error
in the eigenvalues and maximum residual norm across all nev eigenpairs.

the approximation of the sought eigenpairs. Moreover, all eigenpairs are approximated483

to comparable accuracies for a given value of N , i.e., the accuracy of an eigenpair is484

relatively insensitive to the location of the eigenvalue inside [α, β].485

5.2. Distributed-memory performance. We now illustrate the distributed-486

memory efficiency of Algorithm 3.1 on a variety of larger problems coming from dis-487

cretizations of the Laplacian as well as general symmetric matrices and pencils from488

the SuiteSparse collection. Unless otherwise indicated, throughout the rest of this489

section, we take nev = 100, and we set the second dimension of the 2D MPI grid to490

be pc = N . In most of the tests, we report the results with N = 8 or N = 4. The491

parallel efficiency of a program executing on φ ∈ N processes is P (φ) = T1/(φTφ),492

where Tφ denotes the wall-clock time for execution on φ processes.493
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Fig. 5.2: Relative errors in the eigenvalues returned by Algorithm 3.1 (top) and correspond-
ing residual norms (center) for various values of N for the problems “FDmesh” (left) and
“FEmesh” (right). The bottom two figures plot the maximum relative error in the eigenvalues
and maximum residual norm across all nev eigenpairs.

We benchmark Algorithm 3.1 against PARPACK applied directly to the pencil494

(A,M) both with and without shift-and-invert. PARPACK requires the application495

of either M−1 (without shift-and-invert) or A−1 (with shift-and-invert), and since A496

and M are distributed, we used a distributed direct solver for these operations. The497

results reported here were generated using the MUMPS package [1], but our code also498

provides interfaces for SuperLU Dist [32] and the Intel Cluster Sparse Solver (pro-499

vided in the MKL). For PARPACK, we report the wall-clock time and parallel efficiency500

for a restart length equal to m = 2nev with all MPI processes bundled in the de-501

fault communicator MPI COMM WORLD. To keep the comparisons fair, the convergence502

tolerance passed to PARPACK for each problem is set to the maximum residual norm503

returned by Algorithm 3.1.504
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Fig. 5.3: Left: parallel efficiency of Algorithm 3.1 with nev = 100 and pc = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4, 8 and PARPACK with and
without shift-and-invert. The number of MPI processes ranges from Np = 2 to Np = 512.
The number of partitions is set equal to p = 32 (n = 257 × 256), p = 64 (n = 513 × 512),
and p = 128 (n = 1025 × 1024), when N = 8. The value of p is doubled when N = 4 since
each column communicator now has twice as many processes.

5.2.1. Eigenvalue problems from finite difference discretizations. First,505

we apply Algorithm 3.1 to matrices arising from finite difference discretizations of the506

Dirichlet eigenvalue problem,507

(5.1)
−∆u = λu in Ω

u = 0 on ∂Ω,
508

where ∆ denotes the Laplacian and Ω is either the square (0, 1)2 in 2D or the cube509

(0, 1)3 in 3D. We use the standard 5- and 7-point stencils in 2D and 3D, respectively.510

All these eigenvalue problems are standard ones, with M equal to the identity matrix.511

Our first set of experiments focuses on the strong scaling of Algorithm 3.1. We512

take nev = 100 and use N = 4, 8 Chebyshev nodes. In our results, we refer to513

Algorithm 3.1 with N = 4 as SchurCheb(4) and with N = 8 as SchurCheb(8).514

We first consider three different 2D discretizations with matrix sizes n = 257 × 256,515

n = 513×512, and n = 1025×1024, respectively. Table 5.1 lists the maximum relative516

error in the eigenvalues returned by Algorithm 3.1. Figure 5.3 (left) plots the parallel517
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Table 5.1: Maximum relative error in the eigenvalues returned by Algorithm 3.1 for the finite
difference problems.

n = 257× 256 n = 513× 512 n = 1025× 1024 n = 65× 64× 63

SchurCheb(4) 5.1× 10−4 8.2× 10−5 1.4× 10−4 9.1× 10−5

SchurCheb(8) 2.3× 10−9 2.9× 10−11 2.5× 10−7 1.9× 10−10
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Fig. 5.4: Left: parallel efficiency of Algorithm 3.1 with nev = 100 and pc = N = 8. Right:
wall-clock time comparison between Algorithm 3.1 with N = 4, 8 and PARPACK with and
without shift-and-invert. The number of MPI processes ranges from Np = 8 to Np = 256.
The number of partitions is set to p = 64 (N = 8) and p = 128 (N = 4).

efficiency of Algorithm 3.1 for N = 8, where we report separately the parallel efficien-518

cies associated with: (a) computation of the eigenvector matrices Yj , j = 0, . . . , N−1,519

(b) orthonormalization of the projection matrix R, and (c) everything else. Since520

pc = N , the computation of the Yj is embarrassingly parallel, leading to nearly per-521

fect efficiency for this step. On the other hand, both the orthonormalization of R and522

the formation of RTAR require communication among the Np processes, and their523

efficiency can deteriorate for larger values of Np. Note also that the parallel granu-524

larity of Algorithm 3.1 is lower for smaller problem sizes, leading to lower efficiencies525

compared to larger problems.526

Figure 5.3 (right) plots the wall-clock time achieved by Algorithm 3.1 for N = 4, 8,527

PARPACK with and without shift-and-invert, and the Locally Optimal Block Precondi-528

tioned Conjugate Gradient (LOBPCG) method as implemented in the BLOPEX package529

of hypre [11]. The wall-clock times of LOBPCG were obtained with AMG precondition-530

ing and we present the best (lowest) times after performing extensive tests involving531

various choices for the hyperparameters and preconditioners. Regarding the perfor-532

mance of PARPACK, note that due to the fact that A comes from a 2D discretization,533

shift-and-invert is generally very fast when the direct solver scales satisfactorily; how-534

ever, the efficiency of MUMPS falls off faster than that of Algorithm 3.1 as Np increases,535

and for larger values of Np, Algorithm 3.1 becomes the fastest and most scalable ap-536

proach. Similarly, LOBCPG is competitive with Algorithm 3.1 for smaller values of Np537

but becomes comparatively slower as Np increases.538

Figure 5.4 plots the same quantities for a 3D discretization matrix of size n =539

65×64×63. The main difference between the 2D and 3D case is that PARPACK without540

shift-and-invert now converges much faster, leading to lower orthogonalization costs.541

Moreover, because A is banded, the parallel efficiency of distributed-memory sparse542

matrix-vector products with A remains high even when Np = 256. Nonetheless,543
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Table 5.2: Peak memory consumption of Algorithm 3.1 and of PARPACK with shift-and-invert
for the finite difference problems.

n = 257× 256 n = 513× 512 n = 1025× 1024 n = 65× 64× 63
Np = 128 Np = 256 Np = 512 Np = 256

SchurCheb(4) 1.2 GB 2.4 GB 9.3 GB 2.3 GB
SchurCheb(8) 2.2 GB 4.6 GB 18.8 GB 4.6 GB
PARPACK 21.4 GB 45.0 GB 106.4 GB 46.6 GB

Table 5.3: Partitioning information for the test matrices arising from regular finite difference
discretizations of the Laplacian in 2D and 3D.

Size N p d s

1025× 1024
8 128 1,002,735 46,865
4 256 982,871 66,729

513× 512
8 64 247,046 15,610
4 128 240,021 22,635

257× 256
8 32 60,722 5,070
4 64 58,315 7,477

65× 64× 63
8 64 193,420 68,660
4 128 171,288 90,792

Algorithm 3.1 still attains greater strong scaling efficiency than PARPACK (with or544

without shift-and-invert) and hence will outperform it given enough parallel resources.545

As Algorithm 3.1 does not need to factor A, it requires considerably less storage546

than PARPACK with shift-and-invert. Table 5.2 lists the global peak memory consump-547

tion for both of these algorithms for the finite difference discretization problems just548

described. Even with N = 8 Chebyshev nodes, Algorithm 3.1 uses 5 to 10 times less549

memory than shift-and-invert PARPACK across all problems.550

Table 5.3 presents statistics on the partitioning of the matrices used in the exper-551

iments of Figures 5.3 and 5.4. When the number N of Chebyshev nodes is cut from552

N = 8 to N = 4 the number p of subdomains is doubled to keep the total number553

of MPI processes constant. The dimension s of the Schur complement ranges from554

about 5,000 for the 257× 256 2D Laplacian with p = 8 up to just over 90,000 for the555

65 × 64 × 63 3D Laplacian with p = 4. In all cases, the value of s is considerably556

(roughly 2 to 10 times) smaller than the dimension d of the corresponding B block.557

We now focus on the performance of Algorithm 3.1 when the problem size n558

and number of partitions p are fixed and Np varies proportionally to N . We set559

p = pr = 8 and pc = N , where N = 2, 4, . . . , 16. For this experiment, we consider560

the 2D discretizations of sizes n = 257× 256 and n = 513× 512 and report the wall-561

clock times for each major operation of Algorithm 3.1 in Figure 5.5. The amount of562

time spent computing the matrices Yj and Vj is nearly constant since the maximum563

number of matrix-vector products (iterations) required by PARPACK to compute each564

Yj is more or less the same for each Np (see the solid lines). On the other hand,565

the amount of time required for orthonormalization and the Rayleigh–Ritz projection566

both increase due to: (a) higher computational complexity and (b) higher volume of567
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Fig. 5.5: Weak scaling with respect to N (pr = 8, pc = N) for two 2D finite difference
discretization problems. The number of MPI processes ranges from Np = 8 to Np = 128.
The solid orange lines denote the maximum number of iterations required by PARPACK to
compute the matrices Yj, j = 0, . . . , N − 1.
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Fig. 5.6: Weak scaling with respect to nev for two 2D finite difference discretization problems.
The number of MPI processes are Np = 128 and Np = 256, respectively. The solid orange
lines denotes the maximum number of iterations required by PARPACK to compute the matrices
Yj, j = 0, . . . , N − 1, in Algorithm 3.1.

communication among the increasing number of MPI processes.568

Next, we evaluate the performance of Algorithm 3.1 when computing different569

numbers of eigenvalues (different nev) for the same matrix. We consider the 2D570

discretizations of sizes n = 257×256 and n = 513×512. In each group of tests, we fix571

p, pr, pc, and Np and then vary nev. For the n = 257×256 problem, we take Np = 128572

and pr = N and then set p = 16 when N = 8 and p = 32 when N = 4. For the573

n = 512 × 512 problem, we double p and Np. Figure 5.6 reports the total wall-clock574

times for Algorithm 3.1 under these configurations, taking nev = 50, 100, 150, 200,575

as well as those for PARPACK (with and without shift-and-invert) and LOBPCG. The576

cost of solving the Schur complement eigenvalue problems in Algorithm 3.1 at each577

Chebyshev node increases as nev increases. Nonetheless, Algorithm 3.1 still attains578

wall-clock times that are competitive with PARPACK and LOBPCG.579

In the preceding experiments, we took pc = N . As our final experiment in this580

section, we consider the effect of varying the 2D MPI grid topology. We consider581

the 2D discretizations of sizes n = 513 × 512. We take N = 8, Np = p = 128,582

nev = 100, and vary the topology as (pr, pc) = (128, 1), (64, 2), (32, 4), (16, 8). Table583

5.4 lists a breakdown of the wall-clock times for the various parts of Algorithm 3.1584

for each topology. The topology (pr, pc) = (128, 1) processes the N Chebyshev nodes585

sequentially, one after the other, but uses allNp MPI processes during the computation586

of each matrix pair (Yj , Vj), j = 0, . . . , N−1, taking on average (26.08+0.35)/8 ≈ 3.3587
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Table 5.4: Wall-clock time breakdown of Algorithm 3.1 for various 2D MPI grid topologies
(RR: Rayleigh–Ritz, GS: Gram–Schmidt).

(pr, pc) Setup Y0,...,N−1 V0,...,N−1 GS RR DSYGVX Total

(128,1) 1.42 26.08 0.35 1.41 1.76 0.14 31.17
(64,2) 0.68 18.06 0.36 1.94 1.81 0.14 23.15
(32,4) 0.32 13.95 0.35 1.71 1.91 0.14 18.41
(16,8) 0.18 13.21 0.35 1.65 2.03 0.14 17.61

seconds for each. At the other extreme, the topology (pr, pc) = (16, 8) processes588

the N Chebyshev nodes completely in parallel, but now computing each (Yj , Vj)589

requires more time—in the worst case, approximately 4 times as much (13.21+0.35 =590

13.56 seconds)—since only pr = 16 processes are available for parallelization of those591

computations. Nevertheless, the total time to solution is nearly halved with (pr, pc) =592

(16, 8) versus (pr, pc) = (128, 1). Thus, in agreement with our previous results, setting593

pc = N is best unless the smaller value of pr creates a memory bottleneck.594

5.2.2. Eigenvalue problems from finite element discretizations. To illus-595

trate the performance of Algorithm 3.1 for generalized eigenvalue problems, we again596

consider matrices arising from discretizations of (5.1) but with linear finite elements597

instead of finite differences. In 2D, we consider the square Ω = (0, 1)2 and the disc598

Ω = {(x, y) : x2 + y2 ≤ 1}, both meshed with unstructured triangular elements. In599

3D, we consider the cube Ω = (0, 1)3, meshed with unstructured tetrahedra.600

Figure 5.7 plots the parallel efficiency of Algorithm 3.1 (left) and associated wall-601

clock times as Np varies. We also plot the wall-clock time of PARPACK with shift-602

and-invert but omit results for PARPACK without shift-and-invert, which required an603

excessive amount of time to converge for these problems. The small sizes of the604

problems (n ≈ 150,000) have chosen intentionally in order to simulate an environment605

with an abundance of parallel resources. As in the experiments of the previous section,606

Algorithm 3.1 attains high parallel efficiency and scales better than PARPACK. The607

efficiency of the orthogonalization step in Algorithm 3.1 dropped below 50% for the608

3D case when Np = 512 due to a large communication-to-computation ratio for the609

Gram–Schmidt process; nevertheless, the overall efficiency is still close to 100%.610

Next, we show the results of a weak scaling test similar to one in the previous611

section, wherein Algorithm 3.1 is applied to a given problem for increasing values612

of nev. As before, we fix p, pr, pc, and Np for each group of tests and vary nev613

as nev = 50, 100, 150, 200. We use the same finite element problems of the previous614

experiment set pc = N . When N = 8, we use Np = 128 and p = 16 for the 2D615

domains and Np = 512 and p = 64 for the 3D domains. When N = 4, we double616

p. The results are reported in Figure 5.8. Again, Algorithm 3.1 attains times to617

solution that are competitive with PARPACK, even though the cost of solving the local618

eigenvalue problems at each Chebyshev node increases with nev.619

Finally, Table 5.5 lists the wall-clock times for Algorithm 3.1 and PARPACK with620

shift-and-invert on a set of larger finite element problems. For Algorithm 3.1 we621

report the wall-clock times for the case Np = 512 and pc = N = 4; for PARPACK, we622

report the best (lowest) wall-clock time obtained over several runs with different Np.623

Algorithm 3.1 was twice as fast for the 2D problems and about as fast as PARPACK624
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Fig. 5.7: Left: parallel efficiency of Algorithm 3.1 applied to the finite element problems with
nev = 100 and pc = N = 8. Right: wall-clock time comparison between Algorithm 3.1 with
N = 4 and N = 8, and PARPACK with shift-and-invert. The number of MPI processes ranges
from Np = 8 to Np = 512. The number of partitions is set equal to p = 16 for the 2D meshes
and p = 64 for the 3D mesh.

Table 5.5: Total wall-clock time for Algorithm 3.1 and PARPACK with shift-and-invert for the
finite element problems with Np = 512, p = 128, and pc = N .

2D square 2D disc 3D cube
n = 1, 086, 615 n = 845, 397 n = 1, 351, 083

SchurCheb(4) 17.2 s 18.3 s 90.1 s
PARPACK 33.6 s 25.9 s 90.3 s

for the 3D problem. Note, though, that in addition to having superior7 scalability,625

Algorithm 3.1 also uses much less memory.626

5.2.3. Eigenvalue problems from the SuiteSparse collection. Finally, to627

demonstrate the performance of Algorithm 3.1 for more general matrices, we apply628

it to several problems taken from the SuiteSparse matrix collection with sizes rang-629

ing from n = 66,172 to n = 1,222,045. Additional details are given in Table 5.6.630

The “qa8fk/qa8fm” problem is a generalized eigenvalue problem; the other four are631

standard problems (M is the identity matrix).632

Figure 5.9 plots the parallel efficiency (left) and wall-clock time (right) for Al-633

7The best wall-clock time of PARPACK for the 3D mesh problem was achieved for Np = 128.
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Fig. 5.8: Weak scaling with respect to nev for three finite element problems. The numbers
of MPI processes are Np = 128 for the 2D domains and Np = 512 for the 3D domain. The
solid red lines denotes the maximum number of iterations required by PARPACK to compute
the matrices Yj, j = 0, . . . , N − 1. in Algorithm 3.1.

Table 5.6: Problems from the SuiteSparse matrix collection. Here, n denotes the size of the
pencil (A,M); nnz(·); counts the number of nonzero entries in its argument; and p denotes
the number of partitions for the case N = 8.

Dataset n p nnz(A)/n nnz(M)/n Application

qa8fk/qa8fm 66,172 16 25.1 25.1 3D acoustics
af shell3 504,855 64 34.8 1.0 structural problem
tmt sym 726,713 64 6.99 1.0 electromagnetics
ecology2 999,999 64 5.00 1.0 2D/3D problem
thermal2 1,228,045 64 6.99 1.0 thermal problem

gorithm 3.1 on each of these problems. For comparison, we also plot the wall-clock634

time of PARPACK with and without shift-and-invert. As in the previous experiments,635

Algorithm 3.1 maintains high parallel efficiency up to 512 MPI processes and, pro-636

vided enough parallel resources, outperforms PARPACK. Additionally, Algorithm 3.1 is637

more memory efficient than shift-and-invert PARPACK as Np increases; Table 5.7 lists638

the peak memory consumption for both algorithms for the maximum Np used in each639

group of tests for each problem. Finally, Table 5.8 lists the maximum error in the640

eigenvalues returned by Algorithm 3.1 for N = 4 and N = 8.641

6. Conclusion. We presented a distributed-memory Rayleigh–Ritz projection642

algorithm to compute a few of the smallest eigenvalues and associated eigenvectors643

of a sparse, symmetric matrix pencil. The algorithm introduces embarrassing par-644

allelism by recasting the problem as one of approximating univariate, vector-valued645

functions via Chebyshev approximation. The computational work associated with646

each Chebyshev node can be assigned to a different group of processors, and we de-647
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Table 5.7: Peak memory consumption of Algorithm 3.1 and of PARPACK with shift-and-invert
for the SuiteSparse problems.

qa8 af shell3 tmt sym ecology2 thermal2
Np = 128 Np = 512 Np = 512 Np = 512 Np = 512

SchurCheb(4) 0.7 GB 5.9 GB 6.7 GB 8.9 GB 11.2 GB
SchurCheb(8) 1.4 GB 11.9 GB 13.2 GB 17.5 GB 22.2 GB
PARPACK 21.7 GB 47.7 GB 50.8 GB 58.7 GB 56.5 GB

Table 5.8: Maximum relative error in the eigenvalues returned by Algorithm 3.1 for the
SuiteSparse problems.

qa8 af shell3 tmt sym ecology2 thermal2

SchurCheb(4) 3.2× 10−4 2.1× 10−4 1.6× 10−4 1.8× 10−5 9.1× 10−5

SchurCheb(8) 1.0× 10−8 3.8× 10−10 6.5× 10−8 8.9× 10−9 1.9× 10−10

scribed a scheme for doing this using a 2D grid of MPI processes. We discussed several648

theoretical aspects and implementation details, including how to orthonormalize the649

Rayleigh–Ritz basis and form the projected eigenvalue problem. Our experiments650

demonstrated that the proposed algorithm attains good parallel efficiency, superior651

to PARPACK.652

While we have focused on computing the smallest eigenvalues of (A,M), our653

technique can be extended to find eigenvalues in other regions of the spectrum. We654

leave the details of this extension as a matter for future work. Additionally, we plan to655

develop a version of this algorithm based on generalized spectral Schur complements,656

in which the matrix Yj is formed by computing a few eigenvectors of the pencil657 (
S(χj),−S′(χj)

)
instead of S(χj) alone. This may allow one to reduce the value of N ,658

permitting the use of more parallel resources within each column MPI communicator.659

We also plan on extending the implementation of our current algorithm so that the660

computations local to each MPI process are performed using graphics processing units.661

Finally, we plan on applying our software to problems from real-world applications,662

e.g., frequency response analysis.663
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