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ON RATIONAL FILTERING AND MATRIX PARTITIONING∗2
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Abstract. This paper describes a set of rational filtering algorithms to compute a few eigen-4
values (and associated eigenvectors) of non-Hermitian matrix pencils. Our interest lies in computing5
eigenvalues located inside a given disk, and the proposed algorithms approximate these eigenvalues6
and associated eigenvectors by harmonic Rayleigh-Ritz projections on subspaces built by computing7
range spaces of rational matrix functions through randomized range finders. These rational matrix8
functions are designed so that directions associated with non-sought eigenvalues are dampened to9
(approximately) zero. Variants based on matrix partitionings are introduced to further reduce the10
overall complexity of the proposed framework. Compared with existing eigenvalue solvers based on11
rational matrix functions, the proposed technique requires no estimation of the number of eigenvalues12
located inside the disk. Several theoretical and practical issues are discussed, and the competitiveness13
of the proposed framework is demonstrated via numerical experiments.14
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1. Introduction. This paper describes a rational filtering framework to com-18

pute a few eigenvalues and associated eigenvectors of non-Hermitian eigenvalue prob-19

lems of the form20

(1.1) Ax = λMx,21

where the matrices A ∈ Cn×n and M ∈ Cn×n are assumed large and sparse, and the22

pencil (A,M) is assumed regular and diagonalizable. The focus of this paper lies in23

computing all eigenvalues located in the interior of a disk D prescribed in the complex24

domain. An illustrative example is shown in Figure 1.1.25

Rational filtering eigenvalue solvers can be seen as (harmonic) Rayleigh-Ritz pro-26

cedures in which the projection subspace is built by exploiting a (complex) rational27

transformation of the matrix pencil (A,M). These transformations are constructed28

so that the gap between eigenvalues located inside the disk D versus those located29

outside the latter is as big as possible after the transformation. Applying a projec-30

tion scheme to the transformed pencil can then significantly enhance the convergence31

towards the sought invariant subspace. The most popular approaches to construct32

efficient rational transformations is either via shift-and-invert or via a discretization33

of the Cauchy integral representation of the eigenprojector along the boundary of the34

disk D [6, 39, 44, 45, 51, 54]. Compared to shift-and-invert, contour integral eigen-35

solvers are generally oblivious to the location of the sought eigenvalues inside the disk36

D, and enjoy enhanced scalability when implemented in distributed memory comput-37

ing environments [1, 18, 21, 24, 50]. Other rational filters, though not necessarily38

based on contour integration, can be found in [4, 5, 15, 25, 28, 31, 41, 47, 48, 49].39

In this paper we consider algorithms in which the projection subspace is set40

equal to the column space of matrices formed after applying a rational transforma-41

tion to the matrix pencil (A,M). These rational transformations are constructed so42
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Fig. 1.1. Sought eigenvalues are denoted by red filled dots. Unwanted eigenvalues located
outside the circumference Γ (denoted by a green dashed curve) of the disk D are denoted by black
solid circles.

that eigenvector directions associated with eigenvalues located outside the disk D are43

approximately mapped to zero, and the corresponding column spaces are captured44

through randomized range finders [33, 34]. The algorithms proposed in this paper are45

also combined with matrix partitionings to reduce the computational complexity of46

the construction of the projection subspace. So far matrix partitioning approaches47

have been featured within the context of rational filtering only for symmetric eigen-48

value problems [21, 23]. One of the main motivations of this paper is to extend this49

class of techniques to non-Hermitian eigenvalue problems.50

Overall, the proposed framework possesses the following advantages:51

Improved robustness. Classical rational filtering approaches such as FEAST52

[39] or the SS algorithm [44, 45] require an estimation of the number of eigenvalues53

located inside the disk D. However, such an estimation is not always readily available54

or easy to compute for generalized eigenvalue problems. On the other hand, an55

inaccurate estimation can lead to slow convergence or failure to capture all required56

eigenpairs. The proposed algorithms bypass this issue by dynamically increasing the57

dimension of the projection subspace.58

Reduced complexity. By combining rational filtering with substructuring, the59

projection subspace is formed as the direct sum of two separate subspaces approxi-60

mated independently. This is done by applying a 2×2 block partitioning to the pencil61

(A,M). Two specialized algorithms are proposed to further reduce the computational62

costs associated with classical rational filtering eigensolvers. The 2 × 2 block parti-63

tioning can be created either in an ad hoc way or by applying a graph partitioner to64

the adjacency graph of the pencil (A,M).65

Enhanced parallelism. In addition to the ample opportunities for parallelism66

offered by rational filtering eigensolvers, the proposed algorithms can take advantage67

of an additional level of parallelism introduced by matrix substructuring.68

The structure of this paper is organized as follows. Section 2 describes a technique69

based on the combination of randomized range finders, harmonic Rayleigh-Ritz pro-70

jections and rational transformations. Section 3 presents two variants based on matrix71

partitioning which aim at reducing the computational cost associated with the con-72

struction of an efficient projection subspace. Section 4 discusses practical details and73

presents computational cost comparisons. Section 5 provides numerical experiments74
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on a few test problems. Finally, Section 6 presents our concluding remarks.75

1.1. Notation. Throughout this paper we denote the spectrum of (A,M) by76

Λ(A,M). The total number of eigenvalues located inside the disk D is assumed77

unknown and is denoted by nev. The eigentriplets of the matrix pencil (A,M) are78

denoted by
(
λi, x

(i), x̂(i)
)
, i = 1, . . . , n, where λi denotes the ith eigenvalue of smallest79

distance from the center of the disk D, and x(i) and
(
x̂(i)
)H

denote the corresponding80

right and left eigenvectors, respectively. Notice that using the above definition we81

have λ1, . . . , λnev ∈ D and λnev+1, . . . , λn /∈ D. The superscript “H” denotes the82

conjugate transpose of the corresponding matrix. Unless mentioned otherwise, the83

term “eigenvector” should be understood to refer to a right eigenvector. Throughout84

the rest of this paper we use the notation rank(X), orth(X), and range(X) to denote85

the rank, orthonormalization, and range (column space) of the m × n matrix X,86

respectively. Moreover, we use the notation span
(
r(1), . . . , r(k)

)
to denote the linear87

span of vectors r(1), . . . , r(k).88

2. Harmonic Rayleigh-Ritz projections and randomized range finders89

for column spaces of matrix functions. Computing a few exterior eigenvalues90

and associated eigenvectors of large and sparse matrix pencils is typically achieved91

via applying a Rayleigh-Ritz procedure (RR) onto a (nearly) invariant subspace as-92

sociated with the sought eigenvalues [37]. For Hermitian eigenvalue problems, the93

RR procedure retains several optimality properties, e.g., see [29]. For non-Hermitian94

eigenvalue problems no such optimality is guaranteed, e.g., when the sought eigenval-95

ues are located in the interior of the spectrum, e.g., inside a disk D surrounded by96

several unwanted eigenvalues, the RR procedure might provide poor results [36].97

An alternative for the solution of interior eigenvalue problems is the harmonic98

Rayleigh-Ritz procedure (HRR) suggested in [35]. More specifically, let matrix Z99

represent a basis of some projection subspace Z. The HRR procedure extracts ap-100

proximate eigenpairs of the form (θ, Zq) by solving the following eigenvalue problem101

(2.1) ZH(A− ζcM)H(A− ζcM)Zq = (θ − ζc)ZH(A− ζcM)HMZq, ζc ∈ C.102

For eigenvalue problems such as the ones considered in this paper, it is reasonable to103

set ζc equal to the center of the disk D. The approximate eigenvalue θ and eigenvector104

Zq are referred to as (harmonic) Ritz value and Ritz vector, respectively. In practice, if105

the subspace Z includes the sought invariant subspace, then (2.1) will return accurate106

approximations of the corresponding eigenpairs provided that there are no spurious107

eigenvalues close to the Ritz values located inside the disk D [19, 35].108

Based on the above discussion, we seek to compute a subspace Z which includes109

the invariant subspace associated with nev sought eigenvalues λ1, . . . , λnev . This sec-110

tion considers ansatz subspaces of the form Z = range
(
ρ(M−1A)

)
for some scalar111

function ρ such that ρ(M−1A) is rank-deficient. The rest of this section considers such112

a function ρ while it also discusses a randomized algorithm to compute the range of113

rank-deficient matrices.114

2.1. Fast randomized range finder for rank-deficient matrices. Let X ∈115

Cm×n be a rectangular matrix. The goal of a range finding procedure is to compute116

an orthonormal matrix Y such that ‖(I − Y Y H)X‖ is zero. In this paper we are117

interested in scenarios where matrix X is rank-deficient and accessible only through118

a Matrix-Vector product routine.119

Let k ∈ N, k < min(m,n), denote the rank of matrix X. The range of matrix120

X is equal to the span of the left-singular vectors corresponding to the k non-zero121
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singular values. The span of these left-singular vectors can be computed in a matrix-122

free fashion by Lanczos bidiagonalization (LBD) [14]. In the absence of round-off123

errors, LBD requires k Matrix-Vector products with each of the matrices X and XH ,124

in addition to the cost introduced by the chosen orthogonalization strategy, e.g., see125

[17]. Alternatively, we can apply k steps of the Lanczos process on XXH [26], but126

this approach still requires 2k Matrix-Vector products overall.127

Algorithm 2.1. Randomized range finding algorithm
0. Inputs: X ∈ Cm×n, Y := 0
1a. For i = 1, . . . ,min(m,n)
2. Fill r ∈ Cn with normally distributed random entries
3. Y = [Y,Xr]
4. Set the i× 1 vector σ(Y ) equal to the (sorted) singular

values of matrix Y

5. If σ
(Y )
i /σ

(Y )
1 ≤ machine epsilon, break;

1b. End
6. Orthonormalize and return Y

128

The complexity of the range finding problem can be reduced by considering tech-129

niques from randomized linear algebra [12, 30, 34]. Randomized numerical algorithms130

have gained significant prominence over the last two decades due to their superior131

performance in several important numerical linear algebra problems, e.g., low-rank132

matrix approximations [16, 32] and principal component analysis [8, 40]. Returning133

to the range finding problem, let R ∈ Cn×k be a matrix whose entries are drawn from134

a Gaussian distribution. Then, with probability one, we have rank(XR) = k and135

range(XR) = range(X) [33]. Thus, a randomized range finder requires only half of136

the Matrix-Vector products performed by LBD or Lanczos. Our interest lies in sce-137

narios where the exact rank of matrix X is either unknown or expensive to estimate.138

To bypass this issue, next we consider a modification of the randomized range finder139

where the Matrix-Vector products with matrix X are performed in an incremental140

manner and no information regarding k is needed.141

Let r(i) ∈ Cn, i = 1, 2, . . ., denote a sequence of vectors with normally randomly142

distributed entries, and
[
Xr(1), Xr(2), . . .

]
denote the evolving matrix in which we143

accumulate the products of matrix X with r(i). After k such products, the rank144

(and range) of the evolving matrix is equal to that of matrix X. Since the following145

Matrix-Vector products Xr(i), i = k + 1, k + 2, . . ., already lie in range(X), the146

evolving matrix will become singular. Therefore, we can bypass the unknown rank147

of matrix X by monitoring the singular values of the evolving matrix. The above148

approach is listed as Algorithm 2.1. The procedure terminates when the ratio of the149

smallest to the largest singular value of the matrix [Xr(1), Xr(2), . . .] becomes zero,150

which in a numerical computing environment translates to smaller than or equal to151

the machine epsilon.1 In the absence of round-off errors, Algorithm 2.1 terminates152

after k + 1 iterations. The SVD of the evolving matrix in Step 3 can be updated153

on-the-fly each time a new column is added [22, 55]. We note here that Algorithm 2.1154

can be also seen as a variation of the adaptive range finder described in [16, Section155

4] with the exception that the stopping criterion is based on the magnitude of the156

condition number of the evolving matrix.157

1We consider a number to be equal to zero if its numerical value is less than the machine epsilon
of the IEEE 754 binary64 definition.
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While our interest lies in computing the exact range(X), in practice we stop the158

iterative procedure in Algorithm 2.1 when the ratio of the smallest to the largest159

singular value becomes less than a small threshold, e.g., 10−12. This helps to avoid160

orthonormalizing an ill-conditioned basis at the last step of Algorithm 2.1, e.g., see161

[13]. If Algorithm 2.1 terminates after k0+k1 < k+1 iterations, then, with probability162

at least 1− 6k−k11 , the matrix Y = orth(X
[
r(1), . . . , r(k0+k1)

]
) satisfies [16]:163

(2.2) ‖(I − Y Y H)X‖2 ≤
(

1 + 11
√
k0 + k1

√
min(m,n)

)
σk0+1(X),164

where σj(X) denotes the jth singular value of matrix X. Therefore, when the sin-165

gular values of matrix X decay fast enough, Algorithm 2.1 can still return a good166

approximation of range(X) in less than k + 1 iterations. Note though that we can167

not predict predict the number of iterations associated with a higher stop tolerance168

in Algorithm 2.1.169

2.2. Column spaces of matrix functions as projection subspaces. Let170

ρ : C∗ → R, C∗ ⊆ C, be a scalar function that is defined over Λ(A,M). Since (A,M)171

is diagonalizable, applying the function ρ to matrix M−1A is equivalent to172

(2.3) ρ(M−1A) =

n∑

i=1

ρ(λi)x
(i)
(
x̂(i)
)H

M.173

Notice now that span
(
x(1), . . . , x(nev)

)
⊆ range(ρ(M−1A)) for any function ρ such174

that ρ(λi) 6= 0, i = 1, . . . , nev. Algorithm 2.2 outlines a two-step procedure to175

approximate the eigenvalues located inside the disk D and associated eigenvectors.176

The first step is to compute an orthonormal basis matrix Z of range(ρ(M−1A))177

by calling Algorithm 2.1. The number of iterations performed by Algorithm 2.1 is178

bounded by the number of eigenvalues λ that satisfy ρ(λ) 6= 0. Therefore, the scalar179

function ρ should be set such that ρ(λi) is about equal to machine precision for as180

many eigenvalues λi /∈ D as possible. The second step is to perform a HRR projection181

step to approximate the eigenvalues located inside D and their associated eigenvectors.182

Note that no information about the value of nev is required.183

Algorithm 2.2. Prototype algorithm
0. Inputs: ρ : C→ R, D
1. Compute an orthonormal basis Z of range(ρ(M−1A))

by Algorithm 2.1
2. Solve the eigenvalue problem in (2.1) and return all

Ritz values θ ∈ D and associated Ritz vectors

184

Motivated by the above discussion, an ideal function ρ is defined by the contour185

integral186

(2.4) P(ζ) =
−1

2πi

∫

Γ

1

ζ − ν dν ,187

where the complex contour Γ denotes the circumference of the disk D, and the inte-188

gration is performed counter-clockwise. By Cauchy’s residue theorem it follows that189

P(ζ) = 1 for any ζ ∈ D, and zero otherwise. Applying (2.4) to (2.3) yields190

(2.5) P(M−1A) =
−1

2πi

∫

Γ

(
M−1A− νI

)−1
dν =

nev∑

i=1

x(i)
(
x̂(i)
)H

M.191
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Fig. 2.1. The modulus of the rational filter ρ(ζ) defined on the unit disk with the trapezoidal
rule of order N = 8 (left) and N = 16 (right).

Algorithm 2.2 then terminates after exactly nev iterations.192

In practice, (2.4) will be approximated by numerical quadrature which leads to a193

rational “filter” function of the form194

(2.6) ρ(ζ) =
N∑

j=1

ωj
ζ − ζj

,195

where the integer N denotes the order of the approximation, and the complex pairs196

{ωj , ζj}j=1,...,N denote the weights and nodes of the quadrature rule, respectively.197

Rational filter functions of this form were pioneered in the context of eigenvalue198

solvers first in [2, 6, 39, 44]. The application of (2.6) to the pencil (A,M) then gives199

(2.7) ρ(M−1A) =

N∑

j=1

ωj(M
−1A− ζjI)−1 =

N∑

j=1

ωj(A− ζjM)−1M,200

and computing ρ(M−1A)r for a vector r at each iteration of Algorithm 2.2 involves: a)201

one Matrix-Vector product with matrix M , and b) the solution of one linear system202

with each matrix A − ζjM, j = 1, . . . , N . These N linear system solutions can203

be obtained in parallel by replicating matrices A and M in N different groups of204

processors.205

Ideally, the function in (2.6) should decay to zero as ζ moves away from D. Figure206

2.1 plots the modulus of a rational filter ρ(ζ) defined on the unit disk (D ≡ {|z| : |z| ≤207

1}) with the trapezoidal rule of order N = 8 (left) and N = 16 (right). Increasing208

the value of N leads to a faster decay of the rational filter ρ(ζ) outside the boundary209

of D. In particular, the approximation of P(ζ) by ρ(ζ) at the center of the disk D210

converges exponentially2 with respect to N [3, 46].211

The convergence of Algorithm 2.1 is likely to be slow for small values of N since212

range(ρ(M−1A)) could contain many eigenvector directions associated with a large213

number of eigenvalues located outside D. As a result, subspace iteration might be a214

better alternative in this case, and this is exploited in the FEAST eigenvalue solver215

library [38, 39]. The drawback of subspace iteration as a projection scheme is that216

a good estimation of nev is necessary (e.g., see [10, 52, 53]), a condition which is217

bypassed by Algorithm 2.2.218

2Note that eigenvalues λ located very close to the poles ζj can lead to values ρ(λ) which are
larger than one even if λ /∈ D.
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Throughout the rest of this paper we describe two variants which aim at reducing219

the computational cost of Algorithm 2.2.220

3. Algorithms based on matrix partitionings. Let d, s ∈ N, such that221

n = s+ d, and partition each eigenvector x(i), i = 1, . . . , n, of the pencil (A,M) as222

(3.1) x(i) =

(
u(i)

y(i)

)
, u(i) ∈ Cd, y(i) ∈ Cs.223

In addition, let 0χ,ψ denote the zero matrix of size χ× ψ. Then, we can write224

span
(
x(1), . . . , x(nev)

)
= span

([
u(1), . . . , u(nev)

0s,nev

]
+

[
0d,nev

y(1), . . . , y(nev)

])(3.2)

225

⊆ span

([
u(1), . . . , u(nev)

0s,nev

])
⊕ span

([
0d,nev

y(1), . . . , y(nev)

])
.(3.3)226

227

The expression in (3.2) implies that span
(
x(1), . . . , x(nev)

)
is captured by the direct228

sum of span
(
u(1), . . . , u(nev)

)
and span

(
y(1), . . . , y(nev)

)
. The rest of this section de-229

scribes two variations of Algorithm 2.2, presented in Sections 3.2 and 3.3. These230

algorithms make use of matrix partitioning to reduce the computational costs associ-231

ated with the construction of a good HRR projection subspace.232

3.1. Two equivalent matrix resolvent representations. Consider the fol-233

lowing 2× 2 block-partitioning of the non-Hermitian matrices A and M :234

(3.4) A =

(
B F
E C

)
and M =

(
MB MF

ME MC

)
,235

where B, MB ∈ Cd×d, F, MF ∈ Cd×s, E, ME ∈ Cs×d, and C, MC ∈ Cs×s.236

Moreover, define the following matrix-valued functions of ζ ∈ C:237

B(ζ) = B − ζMB , F (ζ) = F − ζMF , E(ζ) = E − ζME , and C(ζ) = C − ζMC .238

For any ζ /∈ Λ(A,M), the matrix (A− ζM)−1 can be written as239

(3.5)

(A− ζM)−1 =

(
B(ζ)−1

[
I + F (ζ)S(ζ)−1E(ζ)B(ζ)−1

]
−B(ζ)−1F (ζ)S(ζ)−1

−S(ζ)−1E(ζ)B(ζ)−1 S(ζ)−1

)
,240

where the s× s matrix-valued function241

S(ζ) = C(ζ)− E(ζ)B(ζ)−1F (ζ)242

is the Schur complement of matrix A− ζM . Combining (3.5) with (2.7) then gives243

(3.6)

ρ(M−1A) =
N∑

j=1

ωj

[
B(ζj)

−1
[
I + F (ζj)S(ζj)

−1E(ζj)B(ζj)
−1
]
−B(ζj)

−1F (ζj)S(ζj)
−1

−S(ζj)
−1E(ζj)B(ζj)

−1 S(ζj)
−1

]
M.244

Similarly, the matrix (A− ζjM)−1 can be expressed in terms of the eigenvectors245

of the matrix pencil (A,M) as246

(3.7) (A− ζjM)−1 =

n∑

i=1

x(i)
(
x̂(i)
)H

λi − ζj
.247
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Then, by partitioning the left eigenvectors of the pencil (A,M) as in (3.1),248

(
x̂(i)
)H

=
[(
û(i)
)H (

ŷ(i)
)H]

,
(
û(i)
)H
∈ C1×d,

(
ŷ(i)
)H
∈ C1×s,249

and combining (2.7) with (3.7), we obtain the following identity:250

(3.8) ρ(M−1A) =

n∑

i=1

ρ(λi)

[
u(i)

(
û(i)
)H

u(i)
(
ŷ(i)
)H

y(i)
(
û(i)
)H

y(i)
(
ŷ(i)
)H

]
M.251

3.2. First algorithm. In this section we present an algorithm which exploits the252

equivalent representations of ρ(M−1A) shown in (3.6) and (3.8) to build a subspace253

which captures span
(
u(1), . . . , u(nev)

)
and span

(
y(1), . . . , y(nev)

)
.254

Equating the (1,2) and (2,2) blocks on the right-hand sides of (3.6) and (3.8) gives255

(3.9)

−
N∑

j=1

ωjB(ζj)
−1F (ζj)S(ζj)

−1 =

n∑

i=1

ρ(λi)u
(i)
(
ŷ(i)
)H

,

N∑

j=1

ωjS(ζj)
−1 =

n∑

i=1

ρ(λi)y
(i)
(
ŷ(i)
)H

.

256

These identities indicate that, under mild conditions, we can capture a superset of257

span
(
u(1), . . . , u(nev)

)
and span

(
y(1), . . . , y(nev)

)
by capturing the range of the ma-258

trices on the left-hand side in (3.9).259

Theorem 3.1. Let
[
u(i)
]
ρ(λi) 6=0

,
[
y(i)
]
ρ(λi) 6=0

, and
[
ŷ(i)
]
ρ(λi)6=0

, denote the ma-260

trices whose columns are formed by those vectors u(i), y(i), and ŷ(i), for which ρ(λi) 6=261

0, i = 1, . . . , n, respectively. If the rank of matrices
∑N
j=1 ωjB(ζj)

−1F (ζj)S(ζj)
−1262

and
∑N
j=1 ωjS(ζj)

−1 is equal to that of matrices
[
u(i)
]
ρ(λi) 6=0

and
[
y(i)
]
ρ(λi) 6=0

, re-263

spectively, then:264

(3.10) range

([
u(i)
]
ρ(λi)6=0

)
= range




N∑

j=1

ωjB(ζj)
−1F (ζj)S(ζj)

−1


 ,265

and266

(3.11) range

([
y(i)
]
ρ(λi)6=0

)
= range




N∑

j=1

ωjS(ζj)
−1


 .267

Proof. First, notice that range
([
ρ(λi)u

(i)
]
ρ(λi) 6=0

)
= range

([
u(i)
]
ρ(λi)6=0

)
, and

range
([
ρ(λi)y

(i)
]
ρ(λi)6=0

)
= range

([
y(i)
]
ρ(λi)6=0

)
. Second, we have

N∑

j=1

ωjB(ζj)
−1F (ζj)S(ζj)

−1 =
[
ρ(λi)u

(i)
]
ρ(λi)6=0

[
ŷ(i)
]H
ρ(λi) 6=0

,

and
N∑

j=1

ωjS(ζj)
−1 =

[
ρ(λi)y

(i)
]
ρ(λi) 6=0

[
ŷ(i)
]H
ρ(λi) 6=0

.
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Recall now that for two matrices X1 and X2, if the rank of the matrix X1X2 is equal268

to that of X1, then the span of the columns of X1 is equal to the range of X1X2. The269

results in (3.10) and (3.11) follow directly by setting X1 =
[
ρ(λi)u

(i)
]
ρ(λi)6=0

in (3.10)270

and X1 =
[
ρ(λi)y

(i)
]
ρ(λi) 6=0

in (3.11), respectively, while X2 =
[
ŷ(i)
]H
ρ(λi)6=0

.271

Theorem 3.1 implies that a necessary condition for (3.10) and (3.11) to hold is272

(3.12) max

(
rank

([
u(i)
]
ρ(λi)6=0

)
, rank

([
y(i)
]
ρ(λi)6=0

))
≤ rank

([
ŷ(i)
]
ρ(λi)6=0

)
.273

For symmetric eigenvalue problems we have y(i) = ŷ(i) and (3.12) is trivially satisfied274

[20]. In practice, the violation of (3.12) for non-Hermitian eigenvalue problems is275

quite rare in a finite-precision arithmetic environment.276

Algorithm 3.1 outlines a matrix partitioning procedure to build the HRR projec-277

tion subspace in (2.1) by setting the latter subspace equal to the direct sum of sub-278

spaces range
(∑N

j=1 ωjB(ζj)
−1F (ζj)S(ζj)

−1
)

and range
(∑N

j=1 ωjS(ζj)
−1
)

. Each279

instance of Algorithm 2.1 called in Algorithm 3.1 performs a number of iterations280

which is at most equal to the number of eigenvalues λ for which ρ(λ) 6= 0. Moreover,281

the two instances of Algorithm 2.1 shown in Steps 1 and 2 are performed in parallel282

and thus the linear system solutions computed in Step 2 are exploited at Step 1 as283

well. Moreover, similarly to Algorithm 2.2, Algorithm 3.1 requires no estimation of284

the value of nev.285

Algorithm 3.1.
0a. Inputs: N, D
0b. Compute the complex pairs {ωj , ζj}j=1,2,...,N , set G := W := 0
0c. (Optionally) Reorder (A,M) as in Section 4.2

1. Compute an orthonormal basis G of range
(∑N

j=1 ωjS(ζj)
−1
)

by Algorithm 2.1

2. Compute an orthonormal basis W of range
(∑N

j=1 ωjB(ζj)
−1F (ζj)S(ζj)

−1
)

by Algorithm 2.1
3. Set Z = [W G ], solve the eigenvalue problem in (2.1) and return

all Ritz values θ ∈ D and associated Ritz vectors

286

Unless mentioned otherwise, the default value of the number of poles in the ra-287

tional filter ρ will be equal to N = 16.288

3.3. Second algorithm. This section describes an alternative technique to con-289

struct the matrix W in Algorithm 3.1 under the assumption that the pencil (B,MB)290

is diagonalizable. Throughout the rest of this section we will denote the eigentriplets291

of the pencil (B,MB) by
(
δi, v

(i), v̂(i)
)
, i = 1, 2, . . . , d, where δi denotes the eigenvalue292

of (B,MB) with the ith shortest distance from the center of the disk D, and v(i) and293 (
v̂(i)
)H

denote the corresponding right and left eigenvectors, respectively.294

By combining (3.2) and (3.4), we can write the top d× 1 part of the eigenvector295

x(i) =
(
u(i)

y(i)

)
associated with the eigenvalue λi as296

(3.13) u(i) = −B(λi)
−1F (λi)y

(i).297

While expression (3.13) is not practical, it serves as a starting point for the construc-298

tion of a subspace which (approximately) captures span
(
u(i)
)

without depending on299

the (unknown) quantities λi and y(i).300

This manuscript is for review purposes only.



10 VASSILIS KALANTZIS, YUANZHE XI, AND LIOR HORESH

Let G be a matrix such that y(i) ∈ range(G), e.g., the matrix G constructed in
Algorithm 3.1. In addition, define the matrices

Vφ =
[
v(1), v(2), . . . , v(φ)

]
and V̂φ =

[
v̂(1), v̂(2), . . . , v̂(φ)

]
,

where φ ∈ Z∗ is larger than or equal to the number of eigenvalues of (B,MB) located301

inside the disk D. Taking advantage of the identity I = VφV̂
H
φ MB + (I − VφV̂ Hφ MB),302

and noticing that span
(
VφV̂

H
φ MBB(λi)

−1F (λi)y
(i)
)
⊆ span

(
v(1), v(2), . . . , v(φ)

)
, we303

can write304

(3.14)

span
(
u(i)
)
= span

(
B(λi)

−1F (λi)y
(i)
)

= span
(
VφV̂

H
φ MBB(λi)

−1F (λi)y
(i) + (I − VφV̂ Hφ MB)B(λi)

−1F (λi)y
(i)
)

⊆ span
(
v(1), v(2), . . . , v(φ)

)
+ span

(
(I − VφV̂ Hφ MB)B(λi)

−1F (ζ)G
)
+

span
(
(I − VφV̂ Hφ MB)B(λi)

−1MFG
)
,

305

where ζ ∈ D, and we replaced F (λi) by its equivalent form

F (λi) = F (ζ)− (λi − ζ)MF .

The expression in (3.14) still depends on λi through the term B(λi)
−1. Next, we306

show an equivalent expression of the matrix (I − VφV̂ Hφ MB)B(λi)
−1.307

Theorem 3.2. Let ζc ∈ C be the center of disk D and φ ∈ N larger than or equal308

to the number of eigenvalues of (B,MB) located inside D. If we define the matrix309

B̃(ζ) :=
(
I − VφV̂ Hφ MB

)
B(ζ)−1,310

then311

(3.15)
(
I − VφV̂ Hφ MB

)
B(λi)

−1 = B̃(ζc)

∞∑

k=0

[
(λi − ζc)MBB̃(ζc)

]k
,312

for any λi ∈ D.313

Proof. Define the matrices

V =
[
Vφ, v

(φ+1), . . . , v(d)
]

and V̂ =
[
V̂φ, v̂

(φ+1), . . . , v̂(d)
]
.

Recall that V̂ HMBV = I, and thus MB = V̂ −HV −1 and B = V̂ −H
(
δ1

. . .
δd

)
V −1.314

Using the above identities we can write315

B̃(ζ) =
(
I − VφV̂ Hφ MB

)
V

(
δ1−ζ

. . .
δd−ζ

)−1

V̂ H

= V




0φ,φ

1

δφ+1 − ζ
. . .

1

δd − ζ



V̂ H .

316
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Let us now define the scalar γj =
λi − ζc
δj − ζc

. We can write317

B̃(ζc)
[
(λi − ζc)MBB̃(ζc)

]k
= V




0φ,φ

γkφ+1

δφ+1 − ζc
. . .

γkd
δd − ζc




V̂ H .318

Accounting for all powers k = 0, 1, 2, . . ., gives319

B̃(ζc)

∞∑

k=0

[
(λi − ζc)MBB̃(ζc)

]k
= V




0φ,φ ∑∞
k=0 γ

k
φ+1

δφ+1 − ζc
. . .

∑∞
k=0 γ

k
d

δd − ζc




V̂ H .320

Since ζc is the center of D, it follows that |γj | < 1 for any δj /∈ D. Therefore,321

the geometric series converges and
∑∞
k=0 γ

k
j =

1

1− γj
=

δj − ζc
δj − λi

. It follows that322

1

δj − ζc
∑∞
k=0 γ

k
j =

1

δj − λi
.323

We finally have324

B̃(ζc)

∞∑

k=0

[
(λi − ζc)MBB̃(ζc)

]k
= V




0φ,φ

1

δφ+1 − λi
. . .

1

δd − λi




V̂ H

=
(
I − VφV̂ Hφ MB

)
B(λi)

−1.

325

This concludes the proof.326

Theorem 3.2 implies that we can approximate
(
I − VφV̂ Hφ MB

)
B(λi)

−1 through327

a finite truncation of the right-hand side in (3.15). The approximation error of this328

truncation is considered in the following proposition.329

Proposition 3.3. Let ψ be a positive integer and define the error matrix330

Rψ(λi) = (I − VφV̂ Hφ MB)B(λi)
−1 − B̃(ζc)

ψ∑

k=0

[
(λi − ζc)MBB̃(ζc)

]k
.331

Then332

(3.16) Rψ(λi) =
∞∑

k=ψ+1

d∑

j=φ+1

[
(λi − ζc)k

(δj − ζc)k+1

]
v(j)

(
v̂(j)
)H

MB .333
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Proof. Recall the scalar γj =
λi − ζc
δj − ζc

. The matrix Rψ(λi) is then equal to334

Rψ(λi) = V




0φ,φ ∑∞
k=ψ+1 γ

k
φ+1

δφ+1 − ζc
. . .

∑∞
ψ+1 γ

k
d

δd − ζc




V̂ H .335

The proof concludes by replacing γj with its ratio.336

Proposition 3.3 indicates that when ζc is close to the sought eigenvalues λ1, . . . , λnev337

and the eigenvalues δφ+1, . . . , δd are located far away from the disk D, then the matrix338

B̃(ζc)
∑ψ
k=0

[
(λi − ζc)MBB̃(ζc)

]k
can be used as an accurate approximation of the339

matrix (I − VφV̂ Hφ MB)B(λi)
−1 even for small values of ψ.340

Based on the above discussion, we expect to find a reasonable approximation of341

the subspace span
(
u(1), . . . , u(nev)

)
in the range of the matrix342

(3.17) Wφ,ψ =
[
Vφ,

(
I − VφV̂ Hφ MB

)
B̂ψ(ζc)ĜF ,

(
I − VφV̂ Hφ MB

)
B̂ψ(ζc)ĜMF

︸ ︷︷ ︸
only if MF 6= 0

]
,343

where344

B̂ψ(ζc) =

[
B̃(ζc), B̃(ζc)

[
MBB̃(ζc)

]
, . . . , B̃(ζc)

[
MBB̃(ζc)

]ψ]
,345

and we set346

ĜF =




F (ζc)G

F (ζc)G

. . .

F (ζc)G



, ĜMF

=




MFG

MFG

. . .

MFG



.347

Algorithm 3.2.
0a. Inputs: N, D, ψ (optionally), φ (optionally)
0b. Compute the complex pairs {ωj , ζj}j=1,2,...,N , set G := 0
0c. (Optionally) Reorder (A,M) as in Section 4.2

1. Compute an orthonormal basis G of range
(∑N

j=1 ωjS(ζj)
−1
)

by Algorithm 2.1
2. Compute the eigenpairs associated with the φ eigenvalues of smallest

modulus of the pencil (B(ζ),MB) and form the matrix Vφ
3. Set the matrix Wφ,ψ as in (3.17)

4. Set Z =
[
Wφ,ψ

G

]
, solve the eigenvalue problem in (2.1) and return

all Ritz values θ ∈ D and associated Ritz vectors

348

The complete algorithmic procedure is summarized in Algorithm 3.2. The ac-349

curacy in the approximation of the eigenpairs (λi, x
(i)), i = 1, . . . , nev, depends on350

This manuscript is for review purposes only.



RATIONAL FILTERING NON-HERMITIAN EIGENSOLVERS 13

Table 4.1
Total number of linear system solutions of the form B(ζ)xd = bd and S(ζ)xs = bs computed

by Algorithm 2.2, Algorithm 3.1, Algorithm 3.2, and the algorithm used in the FEAST software
package. The variables η1 ∈ N, η2 ∈ N, η3 ∈ N, denote the number of iterations performed by
Algorithm 2.1 when called from Algorithm 2.2, Algorithm 3.1, and Algorithm 3.2, respectively. The
variable τφ denotes the number of linear systems of the form B(ζc)xd = bd required to compute the φ
sought eigenvectors of the pencil (B − ζcMB ,MB) by Implicitly Restarted Arnoldi (IRA) combined
with shift-and-invert [27]. The variable η4 ∈ N denotes the number of iterations performed by
subspace iteration.

Alg. 3.2

Alg. 2.2 Alg. 3.1 MF = 0 MF 6= 0 Sub. It.

B(ζ)xd = bd 2Nη1 Nη2 η3(ψ + 1) + τφ 2η3(ψ + 1) + τφ 2mNη4
S(ζ)xs = bs Nη1 Nη2 Nη3 Nη3 mNη4

the distance of the eigenvalues λi ∈ D from both the center of the disk D and the351

(non-deflated) eigenvalues of the matrix pencil (B,MB). In contrast, the accuracy352

provided by Algorithm 3.1 is irrespective to the location of the eigenvalues λi ∈ D.353

Thus, the latter should be the algorithm of choice when one seeks higher accuracy in354

the approximation of the nev sought eigenpairs of the pencil (A,M). On the other355

hand, Algorithm 3.2 should be preferred when a few digits of accuracy are deemed356

enough, and lower wall-clock execution time is critical.357

Compared to Algorithm 3.1, Algorithm 3.2 introduces two new parameters, ψ ∈ N358

and φ ∈ N. Larger values of these two integers lead to higher accuracy but increase the359

associated computational cost. Increasing the value of ψ aims at reducing the error360

along all eigenvector directions of (B,MB), while increasing the value of φ aims at361

eliminating the approximation error associated with eigenvectors corresponding closer362

to the center of the disk D. Generally speaking, the main improvements in accuracy363

come from increasing the value of ψ. Our default choice is to set ψ = 1, and φ equal to364

the number of eigenvalues of the pencil (B,MB) located inside the diskD. If additional365

accuracy is needed, one can augment Wφ,ψ with either additional eigenvectors of the366

pencil (B,MB) (i.e., increase φ), or additional resolvent approximation matrix terms367

(i.e., increase ψ) and only repeat the Rayleigh-Ritz projection step. This approach368

can be repeated more than once, i.e., until the residual norms of all nev approximate369

eigenpairs are less a chosen threshold.370

4. Practical details.371

4.1. Computational cost comparison. The main computational bottleneck372

of the rational filtering algorithms discussed in this paper is the solution of complex-373

shifted sparse linear systems of the form B(ζ)xd = bd and S(ζ)xs = bs. Therefore, an374

algorithm that requires fewer such linear system solutions will typically be faster as375

well.376

Table 4.1 summarizes the computational costs of Algorithm 2.2, Algorithm 3.1,377

and Algorithm 3.2, where we assume that all linear systems are solved by a direct378

solver and their complexity is oblivious to the actual value of ζ /∈ Λ(B,MB). The379

variables η1 ∈ N, η2 ∈ N, η3 ∈ N, denote the number of iterations performed by380

Algorithm 2.1 when called from Algorithm 2.2, Algorithm 3.1, and Algorithm 3.2,381

respectively. It is straightforward to observe that when η1 ≈ η2 ≈ η3, Algorithm 3.1382

requires about half linear system solutions of the form B(ζ)xd = bd than what Algo-383

rithm 2.2 does. Moreover, Algorithm 3.2 requires a number of linear system solutions384
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which is independent of the number of poles N . Thus, larger values of N should385

increase the computational complexity gap in favor of Algorithm 3.2. For comparison386

purposes we also list the computational complexity of subspace iteration applied to387

matrix ρ(M−1A) with an initial subspace of dimension m ≥ nev. In contrast to the388

algorithms proposed in this paper, the convergence of subspace iteration depends on389

the dimension m of its initial subspace.390

4.2. Matrix partitionings. The matrix partitioning algorithms discussed in391

this paper can take advantage of a reordering of the pencil (A,M) so that the pencil392

(B,MB) is block-diagonal. For Algorithm 3.2 this implies that the computation of the393

matrix Vφ then decouples into p independent generalized non-Hermitian eigenvalue394

problems. The eigenvalues of each one of these p matrix pencils can be then computed395

in parallel.396

To obtain the above reordering we partition the adjacency graph of the matrix397

|A|+
∣∣AT

∣∣+ |M |+
∣∣MT

∣∣ into p ≥ 2 non-overlapping partitions [42]. We then reorder398

the equations/unknowns so that the interior variables across all partitions are ordered399

before the interface ones. The latter procedure is equivalent to transforming the400

original pencil (A,M) into the form
(
PAPT , PMPT

)
, where the n × n matrix P401

holds the row permutation of (A,M). The eigenpairs of (A,M) are connected with402

those of the matrix pencil
(
PAPT , PMPT

)
through the formula403

PAPT
(
Px(i)

)
= λiPMPT

(
Px(i)

)
.404

The matrices PAPT and PMPT can be written us405

PAPT =




B1 F1

B2 F2

. . .
...

Bp Fp
E1 E2 . . . Ep C



, PMPT =




M
(1)
B M

(1)
F

M
(2)
B M

(2)
F

. . .
...

M
(p)
B M

(p)
F

M
(1)
E M

(2)
E . . . M

(p)
E MC




406

where matrices Bi and M
(i)
B are square matrices of size di× di, matrices Fi (Ei) and407

M
(i)
F

(
M

(i)
E

)
are of size di×si (si×di), and the integers di and si denote the number408

of interior and interface nodes located in the ith subdomain of the adjacency graph409

of |A|+
∣∣AT

∣∣+ |M |+
∣∣MT

∣∣, respectively. On the other hand, matrices C and MC are410

of size s× s where s =
p∑
i=1

si.411

5. Experiments. The numerical experiments presented in this section were per-412

formed in a Matlab environment (version R2018b), using 64-bit arithmetic, on a single413

core of a MacBook Pro equipped with a quad-core 2.5 GHz Intel Core i7 processor414

and 16 GB 1600 MHz DDR3 of system memory. The matrices used throughout our415

experiments are listed in Table 5.1 and can be retrieved from SuiteSparse Matrix416

Collection [9] and Matrix Market repository [7].417

Throughout the rest of this section we consider the application of three different418

algorithms: a) Algorithm 3.1, b) Algorithm 3.2, and finally c) subspace iteration with419

the matrix ρ(M−1A), where the initial subspace is of dimension m ≥ nev. We will420

refer to this approach as RSI. As a separate note, a high-performance implementation421

of subspace iteration with rational filtering can be found in the FEAST software422

package.423
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Table 5.1
n: size of matrices A and M , nnz(.): number of nonzero entries.

# Matrix pencil n nnz(A)/n nnz(M)/n Application

1. bfw782 782 9.6 7.6 Engineering
2. utm1700b 1,700 12.7 1.0 Electromagnetics
3. wang1 2,903 6.6 1.0 Semiconductors
4. rdb3200l 3,200 5.9 1.0 CFD
5. thermal 3,456 19.2 1.0 Thermal
6. dw4096 8,192 5.1 1.0 Engineering
7. big 13,209 6.9 1.0 Directed weighted graph

The radius of the disk D is set equal to 1.001 times the radius of the minimal424

enclosing circle of eigenvalues λ1, . . . , λnev . The rational filter function in (2.6) is425

constructed through discretizing (2.4) by the trapezoidal rule of order N . Throughout426

the rest of this section we assume that the iterative loop in Algorithm 2.1 terminates427

when the ratio of the smallest to the largest singular value is less than or equal to428

1.0 × 10−12, and we set a maximum number of four hundred iterations. All matrix429

pencils were reordered as discussed in Section 4.2 using p = 8. The residual norm430

of each approximate eigenpair (λ̂, x̂) is computed as ρ̂ =
‖Ax̂− λ̂Mx̂‖2

‖Ax̂‖2 + |λ̂|‖Mx̂‖2
. All431

algorithms discussed in this section return only those approximate eigenpairs (λ̂, x̂)432

for which λ̂ ∈ D. When more than nev approximate eigenvalues are located in D we433

purge the spurious ones by keeping only those for which the associated residual norm434

is smaller than the threshold tolerance 1.0 × 10−3. This approach was successful in435

all experiments we performed.436

5.1. A detailed example. We consider the computation of the nev = 20 eigen-437

values of smallest modulus (and their associated eigenvectors) of the matrices wang1438

and thermal. The size of the Schur complement matrices after the application of the439

graph partitioner is equal to s = 576, and s = 668, respectively. The application of440

Algorithm 3.1 is visualized in Figure 5.1. The first row of plots shows the nev sought441

and nev immediate unwanted eigenvalues of smallest modulus, while the second row442

of shows the ratio of the smallest to the largest singular value as determined at each443

iteration of Algorithm 2.1 during its application to matrix
∑N
j=1 ωjS(ζj)

−1.3 Notice444

that this ratio approximates zero and decreases faster for larger values of N as a445

consequence of the fact that the rank of the matrix
∑N
j=1 ωjS(ζj)

−1 approaches that446

of the matrix
∑nev
i=1 y

(i)
(
ŷ(i)
)H

, which is bounded from above by nev. Increasing the447

value of N does not always lead to a proportional gain in terms of convergence rate.448

For example, increasing N = 8 to N = 16 reduces the number of iterations by a factor449

of at least four for the first two matrices considered. On the other hand, increasing450

N = 16 to N = 32 reduces the number of iterations by a factor which is smaller than451

two. Moreover, small values of N , e.g., N = 4, might lead to very slow convergence.452

The third and fourth rows of plots show the associated eigenvalue errors (left col-453

umn) and residual norms (right column) returned by Algorithm 3.1. For the choice454

N = 4, the range of matrices
∑N
j=1 ωjB(ζj)

−1F (ζj)S(ζj)
−1 and

∑N
j=1 ωjS(ζj)

−1 was455

not captured to high precision and this is reflected in the approximation of the sought456

eigenpairs. For the choices N = 8, 16 and N = 32, the range of both matrices was457

3Results for matrix
∑N
j=1 ωjB(ζj)

−1F (ζj)S(ζj)
−1 were essentially identical and thus not re-

ported.
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Fig. 5.1. Application of Algorithm 3.1 to matrices wang1 (left column) and thermal (right
column). First row: the nev sought eigenvalues of (A,M) and nev immediate unwanted eigenvalues
of smallest modulus. Second row: the ratio of smallest to largest singular value of matrix G as
determined at each iteration of Algorithm 2.1 during its application to matrix

∑N
j=1 ωjS(ζj)

−1.
Third row: absolute eigenvalue error. Fourth row: residual norm. The indices of the x-axis are
organized such that index ‘i’ corresponds to the sought eigenvalue with the ith smallest real part.
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Fig. 5.2. Singular values of matrices
[
y(1), . . . , y(hnev)

]
,
[
ŷ(1), . . . , ŷ(hnev)

]
, and their prod-

uct
[
y(1), . . . , y(hnev)

] [
ŷ(1), . . . , ŷ(hnev)

]H
, for different values of h ∈ N and size s of the matrix∑N

j=1 ωjS(ζj)
−1. In all figures we set nev = 20. First row: h = 1 and matrix A was partitioned

so that the size of each Schur complement matrix in
∑N
j=1 ωjS(ζj)

−1 is equal to s = 182 (left) and

s = 576 (right). Second row: same as before but now we set h = 8. Third row: angles between

range
([
y(1), . . . , y(hnev)

] [
ŷ(1), . . . , ŷ(hnev)

]H)
and vectors y(1), . . . , y(nev).

captured up to the required tolerance and the sought eigenpairs were captured to458

higher accuracy.459

The results in Figure 5.1 suggest that larger values of N can lead to higher accu-460

racy in Algorithm 3.1 even though the range of matrices
∑N
j=1 ωjB(ζj)

−1F (ζj)S(ζj)
−1461

and
∑N
j=1 ωjS(ζj)

−1 is captured highly accurately for allN = 8, N = 16, andN = 32.462

Consider for example the matrix
∑N
j=1 ωjS(ζj)

−1 =
[
ρ(λi)y

(i)
]
ρ(λi)6=0

[
ŷ(i)
]H
ρ(λi)6=0

. In463

practice, even though the condition in Proposition 3.1 holds, some of the trailing non-464

zero singular values of the matrix
∑N
j=1 ωjS(ζj)

−1 might be (much) smaller than those465

of
[
ρ(λi)y

(i)
]
ρ(λi)6=0

, thus “suppressing” some directions of span
([
ρ(λi)y

(i)
]
ρ(λi)6=0

)
466
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in the range of the matrix
∑N
j=1 ωjS(ζj)

−1. Since these directions generally have a467

nonzero projection to the subspace span
(
y(1), . . . , y(nev)

)
, we expect that the accuracy468

to which we can capture the latter subspace might also be reduced. The same holds469

for span
(
u(1), . . . , u(nev)

)
and the range of matrix

∑N
j=1 ωjB(ζj)

−1F (ζj)S(ζj)
−1 as470

well.471

Figure 5.2 visualizes the above discussion for matrix wang1. In particular, we472

plot the singular values of the matrices
[
y(1), . . . , y(hnev)

]
,
[
ŷ(1), . . . , ŷ(hnev)

]
, as well473

as those of their matrix product, for h = 1 and h = 8, and nev = 20. Smaller474

values of h simulate larger values of N . The size of the Schur complement ma-475

trices was varied as s = 182 and s = 576. Observe that the singular values of476

the matrix
[
y(1), . . . , y(hnev)

] [
ŷ(1), . . . , ŷ(hnev)

]H
trail those of

[
y(1), . . . , y(hnev)

]
. As477

a result, some directions of span
(
y(1), . . . , y(hnev)

)
are captured less accurately in478

range
([
y(1), . . . , y(hnev)

] [
ŷ(1), . . . , ŷ(hnev)

]H)
. The latter effect is sketched in the479

bottom row of plots where we plot the angle between the vectors y(1), . . . , y(nev) and480

range
([
y(1), . . . , y(hnev)

] [
ŷ(1), . . . , ŷ(hnev)

]H)
. Ideally, all angles should be equal to481

zero. However, we observe larger angles when h is larger (i.e., N gets smaller) and482

the vectors y(i) and ŷ(i) lie in a lower-dimensional subspace (i.e., s gets smaller).483
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Fig. 5.3. Application of Algorithm 3.2 to the thermal matrix. Top row: absolute eigenvalue
errors for different values of ψ and φ = 14 (left) and φ = 160 (right). Bottom row: residual norms
for the same values. The indices of the x-axis are organized such that index ‘i’ corresponds to the
sought eigenvalue with the ith smallest real part.

Figure 5.3 plots the eigenvalue approximation errors and corresponding residual484

norms in the approximation of the nev smallest modulus eigenvalues and associated485

eigenvectors of the thermal matrix by Algorithm 3.2. The number of computed486

matrix resolvent terms was set to ψ = 0, 1, 2, and ψ = 3, while the number of487

computed (deflated) eigenvectors was varied to φ = 14 and φ = 160. The choice488

φ = 14 coincides with computing only those eigenvalues of the pencil (B,MB) located489
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inside the disk D. The number of poles was set equal to N = 16.4 As expected, the490

accuracy in the approximation of the sought eigenpairs improves with larger values of491

ψ since the action of the matrix
(
I − VφV̂ Hφ MB

)
B(λi)

−1 is now approximated more492

accurately. Similarly, increasing φ = 14 to φ = 160 leads to enhanced accuracy. Note493

that the major improvements in accuracy come from increasing the value of ψ. This494

was a general trend observed for the rest of our test matrices as well. Moreover, as495

was also discussed in Section 3.3, the accuracy obtained by Algorithm 3.2 depends on496

the location of each eigenvalue λi ∈ D since the action of
(
I − VφV̂ Hφ MB

)
B(λi)

−1497

is better approximated for those λi ∈ D located closer to the center of the disk D.498

This is in contrast to Algorithm 3.1 which provides an almost uniform accuracy for499

all eigenpairs (λi, x
(i)) for which λi ∈ D.500

5.2. Comparisons against subspace iteration with rational filtering. We501

now consider the computation of the nev = 40 eigenvalues of smallest modulus (and502

their associated eigenvectors) of the matrix pencil bfw782, and the matrices utm1700b,503

rdb3200l, dw4096, and big. Figure 5.4 plots the 2nev eigenvalues of smallest modulus504

of the last four matrices. Table 5.2 lists the maximum and minimum absolute
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Fig. 5.4. Plot of the 2nev eigenvalues of smallest modulus of some of the matrices listed in
Table 5.1.

505

eigenvalue errors and associated residual norms returned by Algorithm 3.1 as N varies.506

The number of iterations performed by Algorithm 3.1 is also listed. As expected,507

larger values of N lead to fewer iterations since the rational filter ρ(ζ) decays faster508

outside D. In agreement with the results discussed in Figure 5.2, larger values of N509

also lead to higher accuracy. Additionally, Table 5.3 lists the maximum eigenvalue510

4The results obtained for the choices N = 8 and N = 32 were essentially identical to those for
the case N = 16, and thus are not reported.
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Table 5.2
Minimum and maximum eigenvalue errors and residual norms returned by Algorithm 3.1 for

the test matrices listed in Table 5.1. The total number of iterations performed by Algorithm 3.1 is
also reported. A value ‘F’ indicates that the loop in Algorithm 3.1 did not terminate within four
hundred iterations.

Algorithm 3.1

min |λ− λ̂| max |λ− λ̂| min ρ̂ max ρ̂ It
b
f
w
7
8
2 N = 4 4.3× 10−1 2.1× 10−0 3.2× 10−2 2.4× 10−1 87

N = 8 1.5× 10−2 3.2× 10−1 2.9× 10−4 2.0× 10−2 87

N = 16 1.3× 10−7 4.5× 10−4 5.9× 10−8 1.0× 10−6 76

N = 32 1.1× 10−9 7.4× 10−6 6.6× 10−10 2.8× 10−8 55

u
t
m
1
7
0
0
b N = 4 1.4× 10−8 1.3× 10−4 2.0× 10−7 3.9× 10−6 235

N = 8 1.2× 10−9 3.2× 10−6 6.9× 10−9 2.5× 10−7 134

N = 16 8.0× 10−12 7.0× 10−8 5.9× 10−10 4.0× 10−8 72

N = 32 1.6× 10−11 3.1× 10−8 6.6× 10−10 6.0× 10−8 53

r
d
b
3
2
0
0
l N = 4 2.0× 10−5 1.7× 10−3 9.1× 10−4 1.5× 10−2 296

N = 8 7.2× 10−9 5.7× 10−4 2.3× 10−7 3.5× 10−6 161

N = 16 1.6× 10−12 3.9× 10−9 7.5× 10−10 4.5× 10−8 77

N = 32 1.3× 10−15 2.3× 10−13 2.1× 10−11 5.6× 10−10 52

d
w
4
0
9
6 N = 4 2.4× 10−8 4.0× 10−5 2.9× 10−5 1.4× 10−2 F

N = 8 7.2× 10−12 6.1× 10−9 1.9× 10−8 3.1× 10−5 329

N = 16 2.6× 10−15 1.8× 10−10 2.7× 10−10 5.5× 10−6 147

N = 32 9.8× 10−15 3.4× 10−13 2.6× 10−12 1.5× 10−11 75

b
i
g

N = 4 4.8× 10−6 3.0× 10−2 3.8× 10−4 1.1× 10−2 377

N = 8 1.5× 10−11 3.6× 10−6 2.1× 10−6 1.2× 10−4 226

N = 16 6.2× 10−13 1.7× 10−9 1.0× 10−8 2.8× 10−6 108

N = 32 1.3× 10−14 6.3× 10−11 1.8× 10−9 1.3× 10−6 68

Table 5.3
Maximum eigenvalue error and residual norm returned by Algorithm 3.2 for some of the test

matrices listed in Table 5.1. These results were obtained by setting N = 16 and varying the value
of computed resolvent terms ψ.

bfw782 utm1700b rdb3200l wd4096 big

|λ
−
λ̂
| ψ = 0 9.0× 10−2 5.1× 10−3 1.5× 10−1 2.8× 10−1 7.2× 10−2

ψ = 1 5.9× 10−3 1.0× 10−5 9.1× 10−3 1.2× 10−1 2.0× 10−3

ψ = 2 1.5× 10−4 2.8× 10−7 2.4× 10−4 2.9× 10−3 1.4× 10−5

ψ = 3 8.4× 10−6 9.0× 10−8 7.5× 10−6 9.7× 10−5 8.9× 10−7

ρ̂

ψ = 0 4.3× 10−2 1.2× 10−3 1.0× 10−0 4.6× 10−1 2.6× 10−1

ψ = 1 4.1× 10−3 4.7× 10−4 6.0× 10−2 4.3× 10−1 1.1× 10−1

ψ = 2 2.4× 10−3 2.8× 10−6 1.6× 10−3 3.0× 10−2 4.0× 10−3

ψ = 3 3.8× 10−5 6.6× 10−7 7.3× 10−5 1.2× 10−4 6.2× 10−5

error and residual norm returned by Algorithm 3.2 when the value of φ is set equal511

to the number of eigenvalues located inside the disk D and ψ varies.512

Table 5.4 lists the average number (with respect to N) of linear systems of the513

form B(ζ)xd = bd and S(ζ)xs = bs solved by Algorithm 3.1, Algorithm 3.2, and RSI.5514

The loop in RSI terminates when the maximum residual in the approximation of the515

nev sought eigenpairs becomes smaller than or equal to the maximum residual norm516

achieved by Algorithm 3.1. These residual norms listed in Table 5.2. Notice that the517

number of linear systems B(ζ)xd = bd solved by Algorithm 3.2 is independent of N ,518

and thus the average value becomes smaller as N increases. On the other hand, the519

5These numbers do not include the cost to compute a good approximation of nev in RSI.
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Table 5.4
Average number of linear systems of the form B(ζj)xd = bd and S(ζj)xs = bs solved per

pole ζj , j = 1, . . . , N . For Algorithm 3.2 we consider only the case ψ = 3. For RSI we set
m := m1 = 1.1nev , m := m2 = 1.5nev , and m := m3 = 2nev.

bfw782 utm1700b rdb3200l dw4096 big

B(ζj) S(ζj) B(ζj) S(ζj) B(ζj) S(ζj) B(ζj) S(ζj) B(ζj) S(ζj)
N

=
8 Alg. 3.1 87 87 134 134 161 161 329 329 226 226

Alg. 3.2 112 87 76 134 71 161 176 329 127 226
RSI(m1) 264 132 616 308 616 308 616 308 704 352
RSI(m2) 120 60 240 120 240 120 480 240 480 240
RSI(m3) 160 80 320 160 320 160 320 160 320 160

N
=

1
6 Alg. 3.1 76 76 72 72 77 77 147 147 108 108

Alg. 3.2 50 76 23 72 26 77 42 147 33 108
RSI(m1) 440 220 352 176 352 176 616 308 352 176
RSI(m2) 360 180 120 60 240 120 240 120 240 120
RSI(m3) 320 160 160 80 160 80 160 80 160 80

N
=

3
2 Alg. 3.1 55 55 53 53 52 52 75 75 68 68

Alg. 3.2 20 55 9 53 10 52 12 75 12 68
RSI(m1) 264 132 176 88 264 132 616 308 352 176
RSI(m2) 240 120 120 60 120 60 240 120 240 120
RSI(m3) 160 80 160 80 160 80 160 80 160 80

accuracy achieved by Algorithm 3.2 is also lower. For RSI we consider three different520

dimensions of the starting subspace, set as m = 1.1nev, m = 1.5nev, and m = 2nev.521

The rate of convergence of RSI is dictated by the ratio ρ(λm)/ρ(λnev ), and thus the522

convergence rate improves as m increases. We observe two main trends. First, for523

small values of m, e.g., m = 1.1nev, RSI is considerably more expensive than both524

Algorithm 3.1 and Algorithm 3.2. This is because for small values of m the ratio525

ρ(λm)/ρ(λnev ) might not be close to zero, thus leading to slower convergence in RSI.526

Second, as m increases, the average number of linear systems solved by RSI generally527

decreases, however the large value of m might lead to a few unnecessary solves, i.e., for528

N = 32 choosing m = 2nev sometimes provides the same accuracy with m = 1.5nev.529

In the previous experiment we assumed that the tolerance threshold in RSI was530

dictated by the maximum residual norm achieved by Algorithm 3.1. Since Algorithm531

3.1 is a one-shot method, its maximum attainable accuracy is lower than that of RSI532

since the latter is an iterative approach. Nonetheless, the accuracy of the approxi-533

mate eigenpairs returned by Algorithm 3.1 can improve by using the corresponding534

eigenvectors as an initial subspace in a separate run of RSI. While this enhancement535

comes at an increased computational cost, it is generally still cheaper than applying536

subspace iteration with a random starting subspace since it avoids the overhead asso-537

ciated with the computation of a good approximation of nev through the techniques538

described in [43] and [10]. Figure 5.5 plots the maximum residual norm achieved at539

the end of each iteration when RSI is applied to matrices utm1700b and dw4096 with540

m = 1.5nev and nev = 40. The initial subspace in RSI was set using “a)” m random541

vectors as in the results reported above (dashed lines), and “b)” the nev approximate542

eigenvectors returned by Algorithm 3.1 augmented by m− nev random vectors (solid543

lines). In the latter case, the value at the origin denotes the accuracy achieved by544

Algorithm 3.1 before post-processing by RSI. The combination of RSI with Algorithm545

3.1 leads to faster convergence, since the initial subspace is of much higher quality.546

What approach will be faster overall depends on the particular problem. For example,547

choosing N = 8 and a random initial subspace leads to very slow convergence in the548

case of matrix dw4096.549
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Fig. 5.5. Maximum residual norm achieved at each iteration of RSI as N varies and m =
1.5nev , nev = 40. The values listed at the origin denote the maximum residual norm achieved by
Algorithm 3.1 before post-processing by RSI.

6. Conclusion. This paper presents a class of algorithms for the computation550

of all eigenvalues (and associated eigenvectors) of non-Hermitian matrix pencils lo-551

cated inside a disk. The proposed algorithms approximate the sought eigenpairs by552

harmonic Rayleigh-Ritz projections on subspaces built by computing range spaces553

of rational matrix functions through randomized range finders. These rational ma-554

trix functions are designed so that directions associated with non-sought eigenvalues555

are dampened to (approximately) zero. Moreover, the proposed algorithms do not556

require any a priori estimation of the number of eigenvalues located inside the disk.557

The competitiveness of the proposed algorithms was demonstrated through numerical558

experiments performed on a few test problems.559

Several research directions are left as future work. One such direction is the ex-560

tension of the algorithms presented in this paper with non-Hermitian Krylov subspace561

iterative solvers and hierarchical preconditioners such as those discussed in [11]. More-562

over, although this paper focused on algorithms, rational filtering eigenvalue solvers563

owe a large portion of their appeal in the ample parallelism they offer, and a dis-564

tributed memory implementation of the proposed technique would be also of interest.565

Another interesting research direction is the extension of the algorithms presented in566
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this paper for the computation of a partial Schur decomposition, or the simultaneous567

computation of both left and right eigenvectors.568
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