
A Scalable Dense Linear System Solver for
Multiple Right-Hand Sides in Data Analytics

Vassilis Kalantzis, A. Cristiano I. Malossi, Costas Bekas,
Alessandro Curioni, Efstratios Gallopoulos, and Yousef Saad

January 2018

EPrint ID: 2018.1

Department of Computer Science and Engineering
University of Minnesota, Twin Cities

Preprints available from: http://www-users.cs.umn.edu/kalantzi

A scalable iterative dense linear system solver for multiple right-hand sides in
data analytics

Vassilis Kalantzisa,∗, A. Cristiano I. Malossib, Costas Bekasb, Alessandro Curionib, Efstratios
Gallopoulosc, Yousef Saada

aDepartment of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
({kalan019,saad}@umn.edu)

bFoundations of Cognitive Solutions, IBM Research � Zürich, Switzerland. ({acm,bek,cur}@zurich.ibm.com)
cDepartment of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece.

(stratis@ceid.upatras.gr)

Abstract

We describe Parallel-Projection Block Conjugate Gradient (pp-bcg), a distributed iterative solver
for the solution of dense and symmetric positive de�nite linear systems with multiple right-hand
sides. In particular, we focus on linear systems appearing in the context of stochastic estimation
of the diagonal of the matrix inverse in Uncertainty Quanti�cation. pp-bcg is based on the block
Conjugate Gradient algorithm combined with Galerkin projections to accelerate the convergence
rate of the solution process of the linear systems. Numerical experiments on massively parallel ar-
chitectures illustrate the performance of the proposed scheme in terms of e�ciency and convergence
rate, as well as its e�ectiveness relative to the (block) Conjugate Gradient and the Cholesky-based
ScaLAPACK solver. In particular, on a 4 rack BG/Q with up to 65,536 processor cores using dense
matrices of order as high as 524,288 and 800 right-hand sides, pp-bcg can be 2x-3x faster than the
aforementioned techniques.

1. Introduction

Several applications necessitate the solution of large linear systems with multiple right-hand
sides by means of Krylov subspace iterative methods that attempt to exploit the fact that there
is a single shared coe�cient matrix. Indeed, an equivalent way to describe the problem is as a
matrix equation. The design of iterative solvers for this problem has been an active research area
since the early 1980s. The �rst contributions were block Conjugate Gradient-type methods [39, 40]
(bcg) that exploited the convergence rate improvements o�ered by the generated block Krylov
subspace, see [27] for a survey. A key idea that led to further improvements of Conjugate Gradient
(cg) and block Krylov methods was to apply and exploit some form of �information sharing�, e.g.
approximating all the solutions from �seed� Krylov subspaces built from one or few right-hand
sides [14, 44, 46, 47, 48]. These �seed methods� were later further re�ned and combined with block
methods into hybrid schemes that also applied techniques such as subspace recycling, augmentation,
de�ation and smoothing, as well as special �global methods� that attempt to alleviate some of
the computationally and memory intensive aspects of block methods, see e.g. [1, 20, 34, 41, 49].

∗Corresponding author

Preprint submitted to Parallel Computing February 1, 2018

Overall, methods have been designed to explore such possibilities, see e.g. [44, 48], and more recently
[1, 10, 12, 19, 26, 37], from applications whose computational kernel is the solution of linear systems
with multiple right-hand sides, speci�cally lattice QCD, electromagnetic and structures.

In this paper we consider applications in Data Analytics, and more speci�cally Uncertainty
Quanti�cation (UQ), where the linear systems with multiple right-hand sides result from the ap-
plication of a stochastic estimator [9, 29] to approximate the diagonal of the inverse of the data
covariance matrix. The latter quantity is of importance when measuring the degree of con�dence in
the quality of data at hand [4, 8, 45, 50, 51]. Other applications of multiple right-hand sides prob-
lems in data analytics, although not considered in this paper, can be found in statistical analysis
[5, 50].

Mathematically, the problem of interest can be formulated as a sequence of linear systems
(batches), each batch with multiple right-hand sides and the same symmetric positive de�nite
(SPD) coe�cient matrix A ∈ Rn×n, namely

AX(j) = Z(j), j = 1, 2, . . . , δ, where Z(j) ∈ Rn×p. (1)

The total number of batches, denoted by δ, is typically not known a priori, and at each given
moment, only a single batch AX(j) = Z(j), 1 ≤ j ≤ δ, is available. For simplicity, all batches are
assumed to be of equal size p ≥ 1, i.e., each batch requires the solution of p right-hand sides. Some
distinguishing features of the problem under consideration in this paper are: The matrices i) are
very large, ii) dense and iii) symmetric positive de�nite and generally well-conditioned, possibly
after some preprocessing, iv) the right-hand sides consist of Gaussian, Rademacher or standard
unit vectors ([6, 43, 54]) and the total number of right-hand sides, δp, is typically much smaller
than the size of the problem n, and, �nally, v) neither the diagonal entries of A−1 nor the linear
system solutions in (1) are sought to high accuracy [17]. Features (i)− (v) will serve as the working
assumptions of our discussion. Because of (i), it is essential to use distributed memory computing
environments. Because of (ii) solvers can reap the advantages of BLAS-3 primitives. Because of
(iii)−(v), the direct O(n3) solution approaches in ScaLAPACK [11] become less practical (in certain
cases A is not even explicitly available), and our interest turns in solving the linear systems in (1)
by exploiting distributed memory Conjugate Gradient-type iterative linear system solvers [28].

When considering the solution of (1) in distributed computing environments, a standard ap-
proach, as proposed in [8], is to solve for each batch AX(j) = Z(j), 1 ≤ j ≤ δ, by applying a
�pseudo-block� cg approach (in the terminology of [7]), i.e., that is deploying standard cg but
organizing the computation so as to solve for all right-hand sides simultaneously. This can improve
e�ciency and runtime since simultaneous Matrix-Vector products (MATVECs) are replaced with
more e�ective Matrix-Multivector products (MATMULs). Recognizing that for diagonal estimators
with large variance many batches of multiple right-hand sides might be required (that is δ � 1),
the method proposed in [33] was the �rst to consider the use of specialized multiple right-hand sides
solvers for the solution of (1) in the context of UQ.

As problems increase in size, it becomes imperative to develop multiple right-hand sides solvers
that ensure both fast convergence when solving for each batch in (1), and good scalability when
implemented in massively parallel architectures, i.e., distributed computing environments with thou-
sands of processors. The latter represents a challenging task, especially given the increasing gap
between the cost of elementary arithmetic and communication operations. Therefore, it is not sur-
prising that in spite of the sizeable literature on multiple right-hand side solvers, there is relatively
little on parallel methods ([1, 7, 18, 21, 31, 36, 38, 40]) and even less ([8, 18, 33]) for problems

2

that satisfy the stated assumptions (in particular dense and SPD matrices) holding in the applica-
tion under consideration in this paper. The literature on parallel solvers is more extensive for the
nonsymmetric case, see e.g. [23, 32, 35, 42, 52].

In this paper, we describe and analyze a new scheme, abbreviated as Parallel-Projection Block
Conjugate Gradient (pp-bcg), for the distributed iterative solution of large and dense linear SPD
systems in UQ. pp-bcg combines the block Conjugate Gradient scheme with partial recycling of
Krylov subspaces using Galerkin projections [14, 44]. In particular, pp-bcg relies on the availability
of a good approximation of the invariant subspace associated with the extremal eigenvalues of A
generated during the application of bcg on the �rst batch of right-hand sides. pp-bcg shares
similarities with mod-init-bcg, a scheme proposed by some of the authors of this paper in [33].
The main di�erences of pp-bcg with mod-init-bcg are the sequencing of the Galerkin projections
and the fact that mod-init-bcg uses a multi-sweep approach, each sweep consisting of a diminishing
number of Galerkin projections. Because mod-init-bcg stores no parts of the Krylov subspace,
MATMULs are required to regenerate the projection subspace. On cluster computing environments,
we found that the multi-sweep approach did not scale satisfactorily, and was a bottleneck. pp-bcg
stores the generated Krylov subspace and projects exactly once. The Galerkin projections scheme
considered in this paper reduces the cost of the projections by a factor of two relative to mod-init-
bcg and also appears to be less penalized by roundo�.

Speci�c contributions of our paper include: i) The development of the pp-bcg parallel numerical
scheme for the solution of linear systems of the form in (1), and its parallel implementation on a
message-passing environment. ii) A performance model for the solver and an analysis of tradeo�s
in communication overheads, memory requirements, and convergence rates. iii) Experiments on a
massively parallel architecture with up to 65,536 cores, using dense matrices of order as high as
n=524,288, and 800 right-hand sides along with performance comparisons against other approaches
such as the cg, bcg and the Cholesky-based ScaLAPACK solvers. We note that in the application
of interest the matrices are relatively well conditioned, therefore we do not consider the use of
preconditioning.

The paper is organized as follows. In Section 2 we present the proposed solver, abbreviated as
pp-bcg. In Section 3 we describe its parallel implementation and give details on various design
aspects as well as a cost-bene�t analysis. In Section 4 we present experiments on a massively
parallel architecture platform and comparisons with other solvers. Concluding remarks are provided
in Section 5.

2. The pp-bcg method

This section outlines the pp-bcg scheme. The key idea is to recycle the Krylov subspace built
while solving AX(1) = Z(1) in order to improve the convergence rate of the subsequent batches
AX(j) = Z(j), j = 2, . . . , δ.

2.1. Solving for the �rst batch of right-hand sides

Since we make no structural assumptions other than that matrix A is dense and SPD, we
consider bcg to be the best choice for solving the �rst batch, AX(1) = Z(1). Algorithm 1 lists the
bcg algorithm for the solution of a linear system of the form AX = Z where Z ∈ Rn×p. Matrices
X0 ∈ Rn×p, R0 = Z − AX0, and P0 = R0, denote the initial approximation, initial residual, and
initial direction block, respectively. Throughout this section we assume that matrix A as well as
multivectors Xi, Ri, Ti and Pi−1 are distributed row-wise among the available processors. Variables

3

αi and βi denote matrices of size p × p that (in the absence of roundo�) are calculated to enforce

the orthogonality conditions in bcg. Moreover, r
(k)
i denotes the kth column of multivector Ri.

Algorithm 1 Block Conjugate Gradient (bcg).

1: input : A, Z, X0, tol, p
2: output : Xi, ζ ≡ i
3: R0 = Z −AX0, P0 = R0, compute R>0 R0

4: i = 1
5: repeat

6: Ti = APi−1
7: αi = (P>i−1Ti)

−1(R>i−1Ri−1)
8: Xi = Xi−1 + Pi−1αi
9: Ri = Ri−1 − Tiαi
10: βi = (R>i−1Ri−1)

−1(R>i Ri)
11: Pi = Ri + Pi−1βi
12: i = i+ 1
13: until

(
max

{
‖r(1)i ‖, . . . , ‖r

(p)
i ‖
}
≤ tol

)

Computing the MATMUL Ti = APi−1 (line 6) demands communication among the processors
to exchange their local sections of Pi−1, while computing the matrix products P>i−1Ti and R>i Ri
in lines 7 and 10 require a reduction operation, each of size p2. For reasons of numerical stability,
the p×p matrix inverses (R>i−1Ri−1)

−1 and (P>i−1Ti)
−1 are computed using the SVD decomposition

(via LAPACK's DGESVD) [3]. The latter allows the (automatic) use of pseudoinverses in case of
rank de�ciency of Ri−1, e.g. when the right-hand sides converge at di�erent rates. Another option,
would be to use breakdown-free techniques similar to those in [2, 12, 30].

By partitioning Xi = [x
(1)
i , . . . , x

(p)
i] and X = [x(1), . . . , x(p)], we have that x

(j)
i ∈ x

(j)
0 +Ki, j =

1, . . . , p, where
Ki ≡ {R0, AR0, . . . , A

i−1R0} ≡ {P0, . . . , Pi−1},
is the block Krylov subspace of dimension up to ip. If we order the eigenvalues of A as 0 < λ1 ≤
. . . ≤ λn, the A-norm of the error of the jth right-hand side after i− 1 bcg iterations satis�es the

inequality
‖x(j)i − x(j)‖A
‖x(j)0 − x(j)‖A

≤ 2

(√
κA − 1√
κA + 1

)i
, where κA = λn/λp [39]. Numerically, therefore, bcg

has faster convergence than cg, since the corresponding value of κA for the latter is larger, namely
κA = λn/λ1.

The bcg algorithm can be applied to the solution of any subsequent batch AX(j) = Z(j), j =
2, . . . , δ. However, this does not entail any information exchange between the batch solves and
therefore, any computational e�ort that is invested in solving AX(1) = Z(1) is not reused. We next
describe a mechanism to enable information reuse across batches.

2.2. Initialization by modi�ed Galerkin projections

Let ζ denote the total number of iterations made by bcg during the solution process of the
�seed� system AX(1) = Z(1), and let matrices Pi−1, Ti, i = 1, . . . , ζ̂ (ζ̂ ≤ ζ) be explicitly stored and
distributed without overlap among the available set of processors. In addition, let matrices αi, βi,
and P>i−1Ti, i = 1, . . . , ζ̂, be replicated in all available processors.

4

The Krylov subspace generated during the solution process of AX(1) = Z(1) can be exploited so
as to improve the convergence rate of bcg applied on any subsequent batch AX(j) = Z(j), j ≥ 2,
by obtaining a non-trivial initial approximation of X(j). This initial approximation is obtained by
means of Galerkin projections [14, 15, 46, 48], i.e., by projecting (de�ating) the initial residual of
AX(j) = Z(j) to the orthogonal complement of the subspace de�ned by direction blocks Pi−1, i =
1, . . . , ζ̂ (one at a time) using oblique projections. In exact arithmetic, this approach essentially
generates an initial approximation of X(j) such that the corresponding residual is orthogonal to the
Krylov subspace Kζ̂ generated while solving AX(1) = Z(1). If the Krylov subspace Kζ̂ has developed
good approximations of the eigenvectors associated with the few extremal eigenvalues of A, then
faster convergence is expected when applying bcg to AX(j) = Z(j) due to the reduced e�ective
condition number.

The practical di�culty with the above approach is that it is based on the A-orthogonality of
direction blocks Pi−1, i = 1, . . . , ζ̂, a property that does not hold in practice due to �nite precision
arithmetic. This was recognized in [1] where it was proposed to use periodic orthogonalization
of the projection subspace formed by a Lanczos-type procedure, and [33] where it was proposed
to perform the Galerkin projections twice or more, each time applied on a diminishing number of
direction blocks.

We propose a modi�ed Galerkin projection scheme that tries to alleviate the e�ects of �nite
precision arithmetic in Galerkin projections without deploying orthogonalization or de�ating each
direction block Pi−1, i = 1, . . . , ζ̂, more than once. More speci�cally, we consider enhancing the
convergence rate of bcg applied on any subsequent batch AX(j) = Z(j), j ≥ 2 by computing a
non-trivial initial approximation through a series of modi�ed (reverse) Galerkin projections:

X̂
(j)

ζ̂−i+1
= X̂

(j)

ζ̂−i + Pi−1(P>i−1Ti)
−1P>i−1R̂

(j)

ζ̂−i, i = ζ̂ : −1 : 1, (2)

R̂
(j)

ζ̂−i+1
= (I − Ti(P>i−1Ti)−1P>i−1)R̂(j)

ζ̂−i, i = ζ̂ : −1 : 1, (3)

where initially X̂
(j)
0 = 0 and R̂

(j)
0 = Z(j).

Algorithm 2 (GalProj) sketches the modi�ed Galerkin projections procedure. Since each
processor has access only to a certain part of Pi−1 and Ti, i = 1, . . . , ζ̂, a reduction operation of size

p×p is necessary to form P>i−1R̂
(j)

ζ̂−i (line 5 of GalProj). After computing H ∈ Rp×p, the update of

X̂
(j)

ζ̂−i and R̂
(j)

ζ̂−i is performed locally in each processor. Overall, each iteration of GalProj requires

O(np2) �oating-point arithmetic operations.
From a distributed memory implementation viewpoint, small values of p lead to reductions that

are dominated by latency. To improve performance, it is possible to de�ate τ >1 direction blocks
Pi, . . . , Pi−τ+1 simultaneously, this way increasing the granularity of each reduction step while reduc-
ing the initialization time of multiple reductions into a single one of size τp2. This approach, how-
ever, requires the explicit formation of the matrix product Z=[Pi, . . . , Pi−τ+1]

>A[Pi, . . . , Pi−τ+1].
For su�ciently small values of τ , this matrix product can be approximated by its on-diagonal block
part P>i Ti, . . . , P

>
i−τ+1Ti−τ+1 which is already computed by Algorithm 1. Indeed, in exact arith-

metic the direction blocks are A-orthogonal, and in �nite precision arithmetic this property might
also hold locally for moderate values of τ .

5

Algorithm 2 The Galerkin projections scheme (GalProj).

1: input : {Ti}i=ζ̂i=1 , {Pi−1}
i=ζ̂
i=1 , X̂

(j)
0 , R̂

(j)
0 , ζ̂

2: output : X̂
(j)

ζ̂

3: i = ζ̂
4: repeat

5: H = (P>i−1Ti)
−1(P>i−1R̂

(j)

ζ̂−i)

6: X̂
(j)

ζ̂−i+1
= X̂

(j)

ζ̂−i + Pi−1H

7: R̂
(j)

ζ̂−i+1
= R̂

(j)

ζ̂−i − TiH
8: i = i− 1
9: until (i == 0)

2.3. Analysis of de�ation by modi�ed Galerkin projections

Consider the de�ation of the direction blocks P0, . . . , Pζ̂−1 (in this order) from the initial residual

R̂
(j)
0 of some batch AX(j) = Z(j), j ≥ 2. During the ith projection step,

Φi = I −APi−1(P>i−1APi−1)−1P>i−1 (4)

projects on the orthogonal complement of the subspace de�ned by Pi−1. If we let

Φ = Πζ̂−1
i=0 Φi, (5)

then, since in exact arithmetic P0, . . . , Pζ̂−1 are A-orthogonal, we get:

ΦR̂
(j)
0 ⊥ {P0, . . . , Pζ̂−1}, (6)

and R̂
(j)

ζ̂
= ΦR̂

(j)
0 becomes orthogonal to any invariant subspace captured in the Krylov subspace

Kζ̂ = {P0, . . . , Pζ̂−1}.
In �nite precision arithmetic, the order of de�ation of the direction blocks P0, . . . , Pζ̂−1 can have

a large impact. To see this, let R̂
(j)
i satisfy R̂

(j)
i ⊥{P0, . . . , Pi−1}. At the next step we compute

R̂
(j)
i+1 = ΦiR̂

(j)
i and thus

R̂
(j)
i+1⊥

{
Pi

}
, R̂

(j)
i+1 ∈

{
R̂

(j)
i

}
+
{
APi

}
.

If R̂
(j)
i+1 is to remain orthogonal to {P0, . . . , Pi−1}, we also need P>ξ APi = 0 for all ξ = 0, . . . , i− 1,

which does not generally hold in �nite precision arithmetic. As a result, each time we de�ate Pi,

components from P0, . . . , Pi−1 re-emerge in R̂
(j)
i+1. To ease this e�ect, we choose to de�ate the

direction blocks P0, . . . , Pζ̂−1 in a reverse manner, i.e., as in (2) and (3). While reverse de�ation
does not eliminate the �nite precision e�ects, in practice leads to initial approximations whose
corresponding residual is typically weaker in the directions associated with the previously de�ated
direction blocks.

Figure 1 illustrates a numerical comparison between the two above de�ation strategies for a
diagonal test matrix with elements Akk = k/104, k = 1, 2, . . . , 104, where we set p = 1 and δ = 2.

6

0 200 400 600 800 1000 1200

Direction P
i

10
-20

10
-15

10
-10

10
-5

10
0

In
n
e
r

p
ro

d
u
c
t

0 10 20 30

Eigenvector

10
-15

10
-10

10
-5

10
0

In
n
e
r

p
ro

d
u
c
t

Figure 1: A comparison of two di�erent de�ation orderings for a diagonal matrix with elements Akk = k/104, k =
1, 2, . . . , 104, where p = 1 and δ = 2. Galerkin projections are performed in the natural order (dashed line) and

reverse order (solid line). Left: Value of ‖Pi−1(P
>
i−1Pi−1)

−1P>i−1R̂
(2)
ζ ‖ for i = 1, . . . , ζ. Right: Inner product between

R̂
(2)
ζ and the eigenvectors associated with the thirty algebraically smallest eigenvalues of A.

We let cg applied to AX(1) = Z(1) perform ζ = 1048 iterations and then call GalProj to compute
an initial approximation for AX(2) = Z(2) by setting ζ̂=ζ. The left sub�gure plots the norm of

the orthogonal projection of R̂
(2)

ζ̂
along each direction block Pi−1, i = 1, . . . , ζ̂, after the Galerkin

projections procedure is implemented in the natural order (dashed line) and reverse order (solid
line). In contrast with the reverse order implementation, the standard order of de�ation leads

to a residual R̂
(2)

ζ̂
in which contributions from the earlier direction blocks have re-emerged. The

right sub�gure shows the inner product between R̂
(2)

ζ̂
and the eigenvectors associated with the

thirty lowest eigenvalues of A for the natural order and reverse order. Implementing the Galerkin

projections in a reverse order, as in GalProj, leads to an initial approximation X̂
(2)

ζ̂
for which R̂

(2)

ζ̂

is closer to being orthogonal to the eigenvectors associated with the few smallest eigenvalues of A.

As a result, faster convergence is expected when the associated initial approximation X̂
(2)

ζ̂
is used

by cg to solve AX(2) = Z(2). We will return to this topic in Section 4.
The overhead involved in the de�ation scheme presented in this section requires the storage

of two sequences of multivectors, Ti and Pi−1, i = 1, . . . , ζ̂. Variable ζ̂ can be set before-hand
according to the amount of system memory being available to the application.

2.4. Galerkin projections under limited memory scenarios

We now consider a modi�cation of GalProj to reduce the memory requirements of pp-bcg. In
particular, we show that it is possible to trade the necessity to store the direction blocks P0, . . . , Pζ̂−1
with an additional number of �oating-point operations.

More speci�cally, assume that during the application of bcg to AX(1) = Z(1) we only store
matrices Ti, αi, βi, i = 1, . . . , ζ̂, as well as matrices Rζ̂ , Pζ̂ . Then, by exploiting equation Pζ̂ =

Rζ̂ +Pζ̂−1βζ̂ in bcg we can recover Pζ̂−1 as Pζ̂−1 = (Pζ̂ −Rζ̂)β
−1
ζ̂
. Generalizing the above concept,

7

each direction block Pi−1, i = ζ̂, . . . , 1 can be generated on-the-�y by the following set of equations:

Pi = (Pi+1 −Ri+1)β
−1
i+1, i = ζ̂ − 1, . . . , 0, (7)

Ri = Ri+1 + Ti+1αi+1, i = ζ̂ − 1, . . . , 0. (8)

At each step i we only need access to matrices Ri+1 and Pi+1, that have been already generated
and temporarily stored from the previous step. Moreover, all computations in (7) and (8) are
trivially parallel since a local copy of the p× p matrices αi, βi, i = 1, . . . , ζ̂, is already available at
each processor. Overall, the necessity to store P0, . . . , Pζ̂−1 is replaced by the need to perform an

additional O(nζ̂p2) �oating-point arithmetic operations. This computational cost will be distributed
among the available set of processors.

In addition, we note that (7) is derived by assuming exact arithmetic during the application of
bcg to AX(1) = Z(1). In practice, βi+1 can become singular or nearly so and pseudoinverses might
have to be used instead.

2.5. The complete distributed scheme

Algorithm 3 pp-bcg.

1: input : A, tol1, tol2, p, ζ̂
2: . Solve AX(1) = Z(1)

3: X(1) = bcg(A, Z
(1)
0 , X

(1)
0 , p, tol1)

4: . For any AX(j) = Z(j)

5: for j = 2, . . . , δ do

6: X̂
(j)

ζ̂
= GalProj(A, X̂

(j)
0 ≡ 0, Z(j), ζ̂)

7: X(j) = bcg(A, Z(j), X̂
(j)

ζ̂
, p, tol2)

8: end for

The complete pp-bcg scheme is described in Algorithm 3. For each batch AX(j) = Z(j), j ≥
2, pp-bcg generates an initial approximation by exploiting the information stored when solving
AX(1) = Z(1) by calling GalProj (line 6). This initial approximation is then passed to bcg (line
7). Note that tol1, the tolerance set for the solution of AX(1) = Z(1), can be di�erent from the
general tolerance tol2 set for the solution of the subsequent batches of right-hand sides. This allows
us to generate a larger and thus richer Krylov subspace which could lead to a more e�cient initial
approximation for the unsolved batches AX(j) = Z(j), j ≥ 2.

3. Distributed memory implementation

3.1. Implementation in 2-D processor grids

We next describe the implementation of pp-bcg on one of the dominant parallel processing
paradigms, that is a distributed memory message passing system using the Message Passing Interface
(MPI) standard [53]. We assume a 2-D grid ofG = M×K processors, where each processor is labeled
by its row and column position on the grid. We can then write matrices A and Z(j), j = 1, . . . , δ,

8

as

A =




A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AM1 AM2 · · · AMK



, Z(j) =




Z
(j)
1

Z
(j)
2

...

Z
(j)
K




where submatrix AIJ is assigned to processor (I, J) and Z
(j)
J is assigned to the Jth processor of the

�rst row of the 2-D processor grid (equivalently, processor (1, J)). Here we assume that I = 1, . . . ,M
and J = 1, . . . ,K.

Let each processor belong to a row group and to a column group on the 2-D processor grid. This
means that now, except for the global communicator, there are M + K additional communicators
which correspond to each di�erent row and column of processors of the 2-D processor grid. Let
matrix P ∈ Rn×p be distributed among the K processors of the �rst row of the 2-D processor grid.
Then, the MATMUL T = AP can be accomplished in parallel as follows (see also Figure 2):

1. Each processor in �rst row holding block PJ broadcasts it along its column using the column
communicator.

2. Each processor performs the product TIJ = AIJPJ .

3. Each processor in a row performs a reduction operation using the row communicator.

4. Each processor of the �rst column (root processor of the corresponding row communicator)
distributes its local result to the corresponding processor of the �rst row of the processor grid.

The communication pattern of the distributed MATMUL enables collective operations on 1-D pro-
cessor grids of size at most max{M,K} plus some point-to-point communication. Except A, all
multivectors are distributed row-wise among the K processors of the �rst row of the 2-D processor
grid and thus for all operations of pp-bcg except the MATMUL, e.g., block inner products or block
AXPY operations, only this subset of processors of the 2-D processor grid is active.

MPI_BCAST

MPI_REDUCE

MPI_SEND

MPI_RECV

Figure 2: Schematic sketch of the communication pattern of MATMUL for a 4×4 2-D processor grid. Left: Broadcast
of local PJ along the columns and reduction of the local products along the rows. Right: Point-to-point communication
of the distributed MATMUL to the processors lying on the �rst row.

Table 1 shows the total number of �oating-point scalars that need to be stored in the system
memory of each processor during each phase of pp-bcg. The quantity mem(AIJ) denotes the

9

number of �oating-point scalars required by the (I, J) processor to store its local portion of A. For
dense unstructured matrices, this quantity runs at mem(AIJ) = nInJ , where nI and nJ denote the
number of rows and columns of matrix A assigned to the (I, J) processor. When memory resources
are limited, we have the option to store matrices Ti only and locally generate Pi−1 on-the-�y (as
described in subsection 2.4). This approach is denoted by the '*' superscript.

Table 1: Memory complexity per processor and phase. GalProj∗ denotes the limited memory version of GalProj
described in Section 2.4.

Phase Memory requirements

bcg (Alg. 1) mem(AIJ) + 4nJp

GalProj (Alg. 2) 2nJp+ 2nJ ζ̂p

GalProj∗ 4nJp+ nJ ζ̂p

Table 2: Computational complexity per processor and iteration. GalProj∗ denotes the limited memory version of
GalProj described in Section 2.4.

Phase Computational complexity

bcg (Alg.1) comp(AP) + 6nJp
2 + 3nJp+ 4nJp

2

GalProj (Alg. 2) 2(2nJp
2 + nJp) + 2nJp

2

GalProj∗ 4(2nJp
2 + nJp) + 2nJp

2

Table 2 shows the per processor computational complexity (per iteration) for all di�erent phases
of pp-bcg. The quantity comp(AP) denotes the computational complexity associated with the
computation of the MATMUL TIJ = AIJPJ . For dense unstructured SPD matrices, this quantity
runs at comp(AP) = nIp(2nJ − 1) �oating-point arithmetic operations. In contrast, the compu-
tational cost of all other operations at any other phase of pp-bcg runs at O(nJp

2) �oating-point
arithmetic operations.

3.2. Communication cost of information sharing

We next model the communication cost of GalProj. For the purposes of our analysis, the
communication cost between any two MPI processes is approximated by the following linear model
(see e.g [13, 22])

tcomm = `+ µq, (9)

where ` is the startup cost (latency), µ is the message size (measured in terms of �oating-point
scalars) and q is the per-scalar transmission rate (bandwidth). Typically, ` is several orders of
magnitude larger than q. We will assume that each processor can send/receive data only to/from
one other processor at any given moment. Since each row of the 2-D processor grid has its own
communicator, the K processors lying on the �rst row communicate independently from the rest
processors of the 2-D grid of processors.

Each time we de�ate one (or more) of the direction block(s) P0, . . . , Pζ̂−1 from the initial residual

of a new batch of p right-hand sides AX(j) = Z(j), we must perform an MPI_Allreduce collective
operation (line 5 in GalProj). The MPI_Allreduce operation can be viewed as a MPI_Reduce-
MPI_Broadcast pair, and, assuming that the processors are positioned as in a binary tree network

10

0 10 20 30 40 50

Number of batches (δ)

10
6

10
7

10
8

10
9

10
10

M
o
d
e
le

d
 c

o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

pp-bcg, τ=1
pp-bcg, τ=10

pp-bcg, τ=20

10
1

10
2

10
3

10
4

Number of MPI processes (K)

10
7

10
8

10
9

M
o
d
e
le

d
 c

o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

0 20 40 60 80 100

Batchsize (p)

10
7

10
8

10
9

M
o
d
e
le

d
 c

o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

0 500 1000 1500

Iterations of the seed (ζ)

10
7

10
8

10
9

10
10

M
o
d
e
le

d
 c

o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

Figure 3: Modeled communication cost to obtain an initial approximation for a batch of p right-hand sides in pp-bcg.
�•�, ���, and �N� pp-bcg using τ = 1, τ = 10, and τ = 20, respectively.

topology, a single step of GalProj will introduce a communication overhead equal to

tτ = dlog(K)e(2`+ 2τp2q + τp2γ), (10)

where τ denotes the number of direction blocks that are simultaneously de�ated, τp2 is the message
size, and γ is the cost per arithmetic operation [13]. The total communication overhead introduced
by the Galerkin projections in GalProj for all δ− 1 subsequent batches of p right-hand sides thus
is

tppbcg =
ζ̂(δ − 1)tτ

τ
. (11)

We quantify the above discussion on a synthetic experiment setting ` = 104q, i.e., the latency
(startup) cost is 104 times larger than the cost to transmit a �oating-point scalar, which is typical
for current architectures. To account for di�erent network architectures, we did not set an actual
value for q. Figure 3 plots the modeled communication cost tppbcg as the numerical value of each

one of the variables K, p, δ and ζ̂ is varied, leaving the rest in their default value. The default
values used were K = 128, p = 20, δ = 20 and ζ̂ = 250. De�ating one direction block at a time
(τ=1) leads to larger communication costs compared to τ > 1, with larger values of τ leading to
better performance. More speci�cally, as τ increases, the communication pattern of pp-bcg shifts
from latency-dominated to bandwidth-dominated. On the other hand, larger values of p already to
bandwidth-dominated communication pattern, thus undercutting the e�ect of τ (see Figure 3 (c)).

11

4. Experiments and performance evaluation

In this section we present numerical experiments performed in distributed memory computing
environments. The proposed method, pp-bcg, was implemented in Fortran 90, and all local MAT-
MUL were performed using the BLAS-3 DGEMM routine in IBM's ESSL. For the rest of this section
we set the parameters in pp-bcg as tol1 = 10−12, tol2 = 10−6, and ζ̂ = 200. While setting τ > 1 can
lead to an improved performance in pp-bcg, its choice enables a non-trivial numerical study which
requires a lengthier exposition. All of our experiments were performed using τ = 1. Moreover, we
only considered 2-D processor grids of sizeM×K whereM and K were related either as K = M or
K = 2M . All computations were performed in 64-bit arithmetic and all times are shown in seconds.

4.1. Computational system

The experiments were performed on a massively parallel architecture consisting of up to 4 racks
of an IBM BlueGene/Q1 (BG/Q) supercomputer [24]. Each BG/Q rack consists of 1024 compute
nodes, each node hosting an 18 core A2 chip that runs at 1.6 GHz, and 16 GBytes of system
memory. Sixteen of the 18 cores are for computation, one for the lightweight O/S kernel, and one
for redundancy. Every core supports 4 hardware threads, thus, in total a rack has 16,384 cores
and can support up to 65,536 threads. BG/Q nodes are connected by a 5-dimensional bidirectional
network, with a network bandwidth of 2 GBytes/s for sending and receiving data. Each BG/Q rack
features dedicated I/O nodes with 4 GBytes/s I/O bandwidth. The system implements optimized
collective communication and allows specialized tuning of point-to-point communication. The pp-
bcg source �les were compiled using the IBM XL F compiler2 version 14.1.13.

4.2. Test matrices

As in [4, 9, 33], we used a synthetic dataset consisting of model covariance matrices, generated
to simulate real-case scenarios in UQ. In particular, each di�erent matrix A was formed as

Aii = 1 + iθ, Aij = 1/|i− j|κ (if i 6= j), i, j = 1, . . . , n, (12)

for real θ and �xed κ = 2. The progressive decay away from the main diagonal simulates the fact
that features are locally-only correlated, and the condition number of these matrices is known to
scale like nθ. In addition, we also experimented with a more general dataset, generated by imposing
additional symmetric perturbations (maintaining the SPDness) at random positions of (12), that
is Aîĵ = Aij + δîĵ , δîĵ = 100/|̂i − ĵ + 1|, and î, ĵ ∈ I where I represents a random subset of the
integers in [1, n] and |I| = n/100. Even though, if explicitly available, the matrices in (12) would be
amenable to special fast methods, for the reasons explained earlier and as in prior literature, we do
not make use of such techniques. Finally, each batch Z(j) was formed by p n-dimensional vectors,
each vector having entries ±1 with equal probability (Rademacher variables).

1IBM and Blue Gene/Q are trademarks of International Business Machines Corporation, registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies.

2Flags used: -O5 -qnosave -qdebug=recipf:forcesqrt -qmaxmem=-1 -qipa=level=2 -qhot=level=2

-qarch=qp -qtune=qp -qsmp=omp:noauto -qthreaded -qsimd=auto

12

4.3. Numerical demonstration

The application of interest is the approximation of the diagonal of a matrix that is only available
via MATVEC's (MATMUL's) using the so called Hutchinson estimator. The diagonal of A−1,
D(A−1), can be approximated by the following stochastic estimator [9]:

Dδ(A−1) :=




δ∑

j=1

p∑

k=1

Z(j,k) �X(j,k)


�




δ∑

j=1

p∑

k=1

Z(j,k) � Z(j,k)


 , (13)

where Z(j,k) denotes the kth column of Z(j), X(j,k) = A−1Z(j,k), and the symbols �,� denote
element-wise multiplication and division, respectively.

0 50 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Estimation of the diagonal of A
−1

of samples (mrhs)

A
b

s
o

lu
te

 M
R

E

θ=0.5, κ=2.0

θ=0.8, κ=2.0

Figure 4: MRE for Monte Carlo stochastic estimator in (13) for a model covariance matrix of size n=8,192 and
θ = 0.5, θ = 0.8.

Figure 4 plots the mean relative error (MRE) of the estimator in (13) for a small-scale model
covariance matrix of size n = 8, 192 as the number of samples (right-hand sides) increases. As was
extensively discussed in [33], the fast solution of (1) is critical for the success of stochastic diagonal
estimation since for estimators with large variance the number of right-hand sides that must be
solved might be of the order O(103).

We now consider the application of pp-bcg on two batches AX(1) = Z(1) and AX(2) = Z(2),
each with p = 5 right-hand sides, for the same model covariance matrices as in Figure 4. Figure 5
plots the inner product between the initial residual of the �rst right-hand side of the yet unsolved
batch AX(2) = Z(2) after we apply GalProj, and the eigenvectors associated with the thirty
algebraically smallest eigenvalues of A. The curve associated with the legend �Standard� refers to
applying the Galerkin projections in the standard (non-reverse) order as in [14, 48]. Similarly to the
results shown in Section 2.3, exploiting the GalProj algorithm, as pp-bcg does, leads to an initial

approximation X̂
(2)

ζ̂
for which the associated residual R̂

(2)

ζ̂
is nearly orthogonal to the eigenvectors

associated with the few smallest eigenvalues of A.

4.4. Runtimes and e�ciency of pp-bcg

We now consider the performance of pp-bcg on distributed memory computing environments.
We used three model covariance matrices generated as in (12), each of size n=131,072, n=262,144

13

0 10 20 30

Eigenvectors

10
-15

10
-10

10
-5

10
0

In
n
e
r

p
ro

d
u
c
t

Standard

Backwards, ζ̂=ζ/2

Backwards, ζ̂=ζ

0 10 20 30

Eigenvectors

10
-20

10
-15

10
-10

10
-5

10
0

In
n
e
r

p
ro

d
u
c
t

Standard

Backwards, ζ̂=ζ/2

Backwards, ζ̂=ζ

Figure 5: Inner product of R̂
(2)

ζ̂
with the thirty lowest eigenvectors of the model covariance matrices A in Figure 4.

Galerkin projections are performed in the natural order (�•�) and reverse order (���,�∗�). Left: θ = 0.5. Right:
θ = 0.8.

and n=524,288. For each value of n, we considered two di�erent values of θ, θ = 0.6 and θ = 0.8,
and solved for a total of s = 800 right-hand sides, dividing the latter in batches of size p = 20, 40
and p = 80. For n=131,072 we used 2ν , ν = 4, . . . , 10 BG/Q compute nodes (i.e. up to one BG/Q
rack). For n=262,144 the values of ν were ν = 6, . . . , 12, while for n=524,288 the latter was set to
ν = 8, . . . , 12 (i.e. up to four BG/Q racks). Since each BG/Q node features exactly 16 processor
cores devoted to computation, the total number of cores used were 16,384 (for n=131,072) and
65,536 for the two larger matrices. The number of MPI processes was always equal to the number
of cores and each MPI process utilized 2 hardware threads to provide maximum bandwidth.

Figure 6 illustrates the strong scalability of pp-bcg for all di�erent combinations of n, p and θ
(log-log scale). The runtimes include all di�erent phases of pp-bcg, i.e., the time required to obtain
the initial approximations and solve for all batches. Observe that larger values of p lead to reduced
runtimes for all matrix sizes and condition numbers. We will verify in Section 4.6 that this behavior
is due to the faster convergence of pp-bcg when higher values of p are used.

Figures 7-9 plot the e�ciencies of the pp-bcg solver and the distributed MATMUL for all
di�erent values of n, p and θ. Assuming a reference baseline execution time tr on a baseline number

ofGr MPI processes, the parallel e�ciency is computed as Ec =
Grtr
Gctc

, where tc denotes the execution

time on Gc > Gr MPI processes. The e�ciencies observed for pp-bcg follow two di�erent regimes.
For smaller numbers of compute nodes, the runtime of pp-bcg is mostly spent on MATMULs and
thus runs at very high e�ciencies, commensurate with those achieved by MATMUL, which run
at almost perfect e�ciency. As the number of compute nodes grows, non-MATMUL operations,
i.e., block AXPY and block inner products, account for a larger portion of the total computational
pro�le since they scale only along the second dimension of the 2-D processor grid (this is also
illustrated in Figure 10 where we plot the computational pro�le of the smallest matrix n=131,072
for all di�erent values of p). As a consequence, pp-bcg transitions to a regime where its e�ciency
is mostly determined by the second dimension of the 2-D processor grid. Overall, as the compute
nodes double for the regimes we have explored, the average observed e�ciencies range from 85 to
90%.

One way to increase the e�ciency of pp-bcg when non-MATMUL operations dominate the
computational pro�le is to use an M × K processor grid where K � M . However, in this case

14

10
2

of BG/Q compute nodes

10
2

10
3

T
o
ta

l
ti
m

e

n=131072

10
2

of BG/Q compute nodes

10
2

10
3

T
o

ta
l
ti
m

e

n=262144

10
3

of BG/Q compute nodes

10
3

T
o

ta
l
ti
m

e

n=524288

Figure 6: Runtimes of the pp-bcg solver. •: p = 20, N : p = 40, � : p = 80. Solid lines: θ = 0.6. Dashed lines:
θ = 0.8.

10 0 10 2 10 4

of BG/Q compute nodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
P

-B
C

G
 e

ff
ic

ie
n
c
y

n=131072, θ=0.6

10 0 10 2 10 4

of BG/Q compute nodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
P

-B
C

G
 E

ff
ic

ie
n
c
y

n=131072, θ=0.8

10
0

10
2

10
4

of BG/Q compute nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

M
A

T
M

U
L

 e
ff

ic
ie

n
c
y

n=131072, θ=0.6

10
0

10
2

10
4

of BG/Q compute nodes

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

M
A

T
M

U
L

 e
ff

ic
ie

n
c
y

n=131072, θ=0.8

Figure 7: E�ciency of the pp-bcg solver and the MATMUL for n=131,072: •: p = 20, N : p = 40, � : p = 80. Solid
lines: θ = 0.6. Dashed lines: θ = 0.8.

15

10
2

10
4

of BG/Q compute nodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
P

-B
C

G
 e

ff
ic

ie
n

c
y

n=262144, θ=0.6

10
2

10
4

of BG/Q compute nodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
P

-B
C

G
 e

ff
ic

ie
n

c
y

n=262144, θ=0.8

10
2

10
4

of BG/Q compute nodes

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

M
A

T
M

U
L

 e
ff

ic
ie

n
c
y

n=262144, θ=0.6

10
2

10
4

of BG/Q compute nodes

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

M
A

T
M

U
L

 e
ff

ic
ie

n
c
y

n=262144, θ=0.8

Figure 8: E�ciency of the pp-bcg solver and the MATMUL for n=262,144: •: p = 20, N : p = 40, � : p = 80. Solid
lines: θ = 0.6. Dashed lines: θ = 0.8.

10
2

10
3

10
4

of BG/Q compute nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
P

-B
C

G
 e

ff
ic

ie
n

c
y

n=524288, θ=0.6

10
2

10
3

10
4

of BG/Q compute nodes

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
P

-B
C

G
 e

ff
ic

ie
n

c
y

n=524288, θ=0.8

10
2

10
3

10
4

of BG/Q compute nodes

0.75

0.8

0.85

0.9

0.95

1

M
A

T
M

U
L

 e
ff

ic
ie

n
c
y

n=524288, θ=0.6

10
2

10
3

10
4

of BG/Q compute nodes

0.75

0.8

0.85

0.9

0.95

1

M
A

T
M

U
L

 e
ff

ic
ie

n
c
y

n=524288, θ=0.8

Figure 9: E�ciency of the pp-bcg solver and the MATMUL for n=524,288: •: p = 20, N : p = 40, � : p = 80. Solid
lines: θ = 0.6. Dashed lines: θ = 0.8.

16

16 64 256 1024
76

78

80

82

84

86

88

90

92

94

96

98

100
98

97

95

90

98

95

91

84

97

93

88

78

of BG/Q compute nodes

P
er
ce
n
ta
ge

Percentage of runtime spent on MATMUL

p = 20 p = 40 p = 80

16 64 256 1024
0

2

4

6

8

10

12

14

16

18

20

22

24

2
3

5

10

2

5

9

16

3

7

12

22

of BG/Q compute nodes

P
er
ce
n
ta
ge

Percentage of runtime spent on block AXPY and DOT products

p = 20 p = 40 p = 80

Figure 10: Performance pro�le of pp-bcg in terms of compute primitives for the case where n=131,072 and θ = 0.6.
The x-axis denotes the number of BG/Q nodes. For each ensemble of BG/Q nodes, the leftmost, middle and rightmost
bars correspond to p = 20, p = 40 and p = 80, respectively.

the e�ciency of the MATMUL operation would not remain the same since the shape of the 2-D
processor grid would become more similar to that of a 1-D topology. From extensive experiments
we performed (not reported due to space limitations), we determined that the optimal topologies
were obtained when K = ρM with a small ρ > 1.

10
0

10
2

10
4

0

5

10

15

20

25

30

P
e

rf
o

rm
a

n
c
e

 (
T

F
/s

)

of BG/Q compute nodes

n=131072, θ=0.6

10
0

10
2

10
4

0

20

40

60

80

100

120

P
e

rf
o

rm
a

n
c
e

 (
T

F
/s

)

of BG/Q compute nodes

n=262144, θ=0.6

10
2

10
3

10
4

0

50

100

150

200

P
e

rf
o

rm
a

n
c
e

 (
T

F
/s

)

of BG/Q compute nodes

n=524288, θ=0.6

Figure 11: Performance (TF/s). •: p = 20, N : p = 40, � : p = 80.

Finally, Figure 11 illustrates the performance of the pp-bcg scheme in terms of Tera Flops per
second (TF/s). Results shown are for θ = 0.6.

4.5. Memory-runtime trade-o�s in pp-bcg

Although we did not experience any breakdowns due to memory limitations, it is important to
consider the performance trend of pp-bcg in scenarios where the direction blocks P0, P1, . . . , Pζ̂−1

17

10
2

10
3

of BG/Q compute nodes

1.05

1.1

1.15

1.2

S
p

e
e

d
u

p
n=131072

10
2

10
3

of BG/Q compute nodes

1.02

1.04

1.06

1.08

1.1

1.12

S
p

e
e

d
u

p

n=262144

10
3

of BG/Q compute nodes

1.02

1.04

1.06

1.08

S
p
e
e
d
u
p

n=524288

Figure 12: Speedup of the �unlimited� memory version of pp-bcg versus the limited memory version. •: p = 20,
N : p = 40, � : p = 80. Solid lines: θ = 0.6. Dashed lines: θ = 0.8.

can not be stored explicitly, and must thus be re-computed by GalProj on-the-�y (see the discus-
sion in Section 2.4).

Figure 12 shows the speedup of pp-bcg using the �unlimited� memory version (the one for which
we reported results so far) versus the limited memory version for the test matrices considered in
Section 4.4. The numerical behavior of the two di�erent versions of pp-bcg was very similar (the
total number of iterations performed by the memory limited version of pp-bcg was slightly bigger).
When the distributed MATMUL dominates the runtimes, the computational pro�le of the two
versions of pp-bcg is quite similar. However, when the total amount of time spent on MATMULs
reduces, the block-AXPY operations in (6) and (7) become noticeable, and the memory limited
version of pp-bcg becomes slower than the �unlimited� memory version.

4.6. Comparisons with cg, bcg and de�ated bcg

In this section we compare the performance of pp-bcg relative to other schemes such as the
�pseudo�-block cg, the bcg, as well as the de�ated version of bcg, abbreviated as (d-bcg) [16].
Similarly to pp-bcg, all schemes were implemented in Fortran 90 and compiled using the IBM XL
F compiler.

To perform the experiments with d-bcg we followed a two-stage procedure. First, we called
block Lanczos3 [25], with a block-size equal to p and performed a number of iterations which was
equal to the number of iterations performed by the �seed� system AX(1) = Z(1) in pp-bcg. We then
retained all approximate eigenpairs of A for which the corresponding residual norm was less or equal

to 10−4. The second phase of d-bcg consisted of obtaining an initial approximation X
(j)
0 for each

batch AX(j) = Z(j), j = 1, . . . , δ, by exploiting the previously computed approximate eigenvectors

of A, and then passing this approximation to bcg. The initial approximation X
(j)
0 was obtained as

X
(j)
0 = U(UTAU)−1UTZ(j), (14)

where U ∈ Rn×w denotes the matrix associated with the 1 ≤ w ≤ n eigenvectors of A retained in
the �rst stage. In particular, if U holds the eigenvectors of A associated with its 1 ≤ w ≤ n smallest
eigenvalues, d-bcg converges with an e�ective condition number κcn = λn/λp+w [16].

3We used full orthogonalization

18

Table 3: Average number of iterations per batch of p right-hand sides during the application of cg, bcg, d-bcg and
pp-bcg to the matrices in Section 4.4.

n=131,072 n=262,144 n=524,288

Batch size (p) 20 40 80 20 40 80 20 40 80

θ = 0.6

cg 156 192 242
bcg 85 71 62 137 111 87 176 155 141
d-bcg 63 52 46 104 89 78 133 117 104
pp-bcg 50 40 35 82 61 55 113 98 83

θ = 0.8

cg 471 625 781
bcg 189 154 122 258 208 149 374 322 246
d-bcg 154 112 81 182 155 136 260 224 193
pp-bcg 87 67 60 111 86 64 141 119 92

4.6.1. Convergence rate per right-hand side

Table 3 shows the average number of iterations per batch of p right-hand sides (equivalently,
the average number of iterations per right-hand side) obtained when solving all δ = 800/p batches
of right-hand-sides by cg, bcg, d-bcg and pp-bcg for the model covariance matrices in (4.4). For
pp-bcg, the results listed include the amortization of the extra iterations performed when solving
AX(1) = Z(1) to the higher accuracy tol1 = 10−12.

Summarizing the results, larger values of p lead to fewer iterations per batch for bcg, d-
bcg and pp-bcg since the e�ective condition number of each right-hand side was at most λn/λp.
Moreover, d-bcg and pp-bcg always converged faster than bcg because of their non-trivial initial
approximation. In particular, pp-bcg and d-bcg o�ered greater speedups for problems that were
less well-conditioned (as in θ = 0.8). As the value of p increases, the speedup ratio of d-bcg and pp-
bcg over bcg starts declining, since the convergence rate is now a�ected more by the blocksize p and
less by the e�ciency of the non-trivial initial approximation. On the other hand, the convergence
rate of cg is oblivious to the value of p since the solution procedure for each right-hand side is
independent from the others within each batch.

A similar behavior was also observed for the perturbed model covariance matrices in Table 4.

4.6.2. Runtime comparisons

The results discussed in Section 4.6.1 demonstrated the e�ciency of pp-bcg in terms of faster
convergence rate per batch. However, when considering massively parallel architectures, the above
does not necessarily imply that pp-bcg will be the fastest scheme also in terms of runtime.

Figure 13 plots the average runtime required to solve for a batch of p right-hand sides by cg,
bcg and pp-bcg, for the values of θ and p shown in Table 3 and the model covariance matrices
of size n=131,072 and n=524,288. Results for d-bcg are omitted since its runtime was always
longer than that of pp-bcg. pp-bcg was the fastest scheme overall, while cg and bcg became

19

10 2 10 3

of BG/Q compute nodes

10 1

10 2

T
o
ta

l
ti
m

e

n=131072, p=20

cg

bcg

pp-bcg

10 3

of BG/Q compute nodes

10 1

10 2

T
o
ta

l
ti
m

e

n=524288, p=20

10 2 10 3

of BG/Q compute nodes

10 1

10 2

T
o

ta
l
ti
m

e

n=131072, p=40

10 3

of BG/Q compute nodes

10 2

T
o
ta

l
ti
m

e

n=524288, p=40

10 2 10 3

of BG/Q compute nodes

10 1

10 2

T
o
ta

l
ti
m

e

n=131072, p=80

10 3

of BG/Q compute nodes

10 2

T
o
ta

l
ti
m

e

n=524288, p=80

Figure 13: Runtime per batch solved by cg (���), bcg (�©�) and pp-bcg (�5�) for the values of θ and p shown in
Table 3 for n = 131, 072 (left column) and n = 524, 288 (right column). Solid lines: θ = 0.6. Dashed lines: θ = 0.8

20

Table 4: Average number of iterations per batch of p right-hand sides during cg, bcg, d-bcg and pp-bcg for
symmetrically perturbed model covariance matrices.

n=131,072 n=262,144 n=524,288

Batch size (p) 20 40 80 20 40 80 20 40 80

θ = 0.6

cg 170 182 218
bcg 102 88 73 132 102 83 148 136 128
d-bcg 67 59 50 86 70 59 118 108 102
pp-bcg 58 44 36 68 54 42 82 78 70

θ = 0.8

cg 495 588 703
bcg 168 138 116 224 176 122 295 239 196
d-bcg 128 91 70 177 143 103 217 180 148
pp-bcg 76 59 48 104 78 58 130 117 102

more competitive for higher values of p. In particular, pp-bcg consistently outperformed both cg
and bcg when the biggest portion of the runtimes was spent on MATMUL (as in θ = 0.8). On
the other hand, because cg and bcg perform less non-MATMUL operations than pp-bcg, and
non-MATMUL operations scale only along the second dimension of the 2-D processor grid, their
e�ciency tends to be higher.

4.7. Comparing with ScaLAPACK

In this last experiment we compare pp-bcg against the distributed memory Cholesky-based
solver in ScaLAPACK [11]. For ScaLAPACK, the covariance matrix A was distributed in a two-
dimensional block-cyclic manner among the processors of the 2-D processor grid. The Cholesky
factorization of A was obtained by PDPOTRF and the linear system solution for each batch of p
right-hand sides was performed by PDPOTRS. The computational blocksize in PDPOTRF was held the
same for both dimensions of the 2-D processor grid and, after some experimental tuning, was set to
mb = 128.

Figure 14 presents comparisons for the model covariance matrix of size n= 262,144 using a �xed
number of 16,384 MPI processes. The left sub�gure shows the runtime of PDPOTRF in ScaLAPACK,
as well as the runtimes of pp-bcg for all di�erent combinations of p = 40, p = 80, and θ = 0.6, θ =
0.8, as δ varies. Depending on the condition number of A, as well as the batch size p, there is a
value of δ after which it is more e�cient to use the direct solver instead of pp-bcg. This can be
also veri�ed by the right sub�gure of Figure 14 where we plot the speedup ratio of pp-bcg over
ScaLAPACK. As a general remark, we found pp-bcg a better alternative than ScaLAPACK in
all cases where the total number of MATVEC products were less than n. The main advantage of
the direct solver is that once the Cholesky factorization of A becomes available, each batch of p
right-hand sides can be solved at the cost of a single MATMUL product. In practice, however, an
iterative approach like the one in pp-bcg o�ers several advantages over direct methods. The solver

21

0 5 10 15 20

δ

0

100

200

300

400

500

600

T
o

ta
l
ti
m

e

n=262144, 16384 MPI processes

ScaLAPACK

pp-bcg, p=40

pp-bcg, p=80

0 5 10 15 20

δ

10 -1

10 0

10 1

10 2

R
a

ti
o

n=262144, 16384 MPI processes

Figure 14: Comparison of ScaLAPACK (dotted line) and pp-bcg (N : p = 40, � : p = 80) as δ varies (solid lines:
θ = 0.6, dashed lines: θ = 0.8). Left: runtimes. Right: speedup of pp-bcg over ScaLAPACK.

can be tuned to the accuracy demanded by the user, which in the application discussed here and
other areas in Data Analytics is lower than that obtained by standard direct solvers operating in one
precision throughout. Moreover, pp-bcg is matrix-free and therefore applicable when A is implicitly
available, which is not the case with direct methods. Finally, in the course of the MATMUL's, one
can also exploit any structure in matrix A and right-hand sides.

5. Conclusion

In this paper we proposed pp-bcg, a distributed numerical scheme for the solution of dense,
symmetric and positive-de�nite linear systems. pp-bcg combines recycling of Krylov subspaces by
Galerkin projections with bcg in order to accelerate its convergence. The key idea in pp-bcg is
to take advantage of the availability of a good approximation of the invariant subspace associated
with the extremal eigenvalues of A generated during the linear system solution procedure for the
�rst batch of right-hand sides. To ease the e�ects of �nite precision arithmetic, pp-bcg applies
the Galerkin projections in a reverse manner. We discussed the numerical aspects of pp-bcg and
described its parallel implementation and a performance model for distributed memory 2-D processor
grids. Experiments performed on a few BG/Q racks illustrated the performance of pp-bcg compared
to several other approaches for solving large linear systems with model covariance matrices and
multiple right-hand sides in an Uncertainty Quanti�cation application. More speci�cally, pp-bcg
can be particularly helpful when the biggest portion of the computational runtimes is devoted to
the MATMULs.

As part of our future work, we plan to pursue a study of pp-bcg on co-processor systems in
combination with mixed precision arithmetic and iterative re�nement. Another interesting path of
research would be to consider the extension of pp-bcg to applications in other areas, e.g., Quantum

22

Chromodynamics, and the study of the implications of special matrix structure such as sparsity
on the overall performance. Indeed, while in this paper we focused on dense matrices, the pro-
posed technique can be applied to sparse matrices and/or dense structured matrices on an �as is�
basis without any need for modi�cations except for an implementation of an e�cient MATVEC
(MATMUL) routine adjusted to the problem of interest.

6. Acknowledgments

Vassilis Kalantzis was partially supported by a Gerondelis Foundation Fellowship. This work was
completed while E. Gallopoulos was on sabbatical leave at the Dept. CSE, University of Minnesota.
We thank the University of Minnesota Supercomputing Institute for providing the computational
resources needed in the initial stage of this work. We also thank the anonymous referees for their
comments which greatly improved the clarity and presentation of this paper.

References

[1] A. M. Abdel-Rehim, R. B. Morgan, and W. Wilcox, Improved seed methods for sym-
metric positive de�nite linear equations with multiple right-hand sides, Numer. Linear Algebra
Appl., 21 (2014), pp. 453�471.

[2] E. Agullo, L. Giraud, and Y.-F. Jing, Block GMRES method with inexact breakdowns
and de�ated restarting, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 1625�1651.

[3] E. Anderson et al., LAPACK Users' Guide, SIAM, 3d ed., 1999.

[4] C. Angerer et al., A Fast, Hybrid, Power-E�cient High-Precision Solver for Large Linear
Systems Based on Low-Precision Hardware, Sustainable Computing: Informatics and Systems,
(2015), pp. 1�27.

[5] M. Anitescu, J. Chen, and M. L. Stein, An inversion-free estimating equations approach
for Gaussian process models, J. Comput. Graph. Stat., 26 (2017), pp. 98�107.

[6] H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-de�nite matrix, J. ACM, 58 (2011), pp. 1�34.

[7] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist, Amesos2 and Belos
- Direct and iterative solvers for large sparse linear systems., Sci. Program., (2012).

[8] C. Bekas, A. Curioni, and I. Fedulova, Low-cost data uncertainty quanti�cation, Concur.
Comput.: Pract. Exper., 24 (2012), pp. 908�920.

[9] C. Bekas, E. Kokiopoulou, and Y. Saad, An estimator for the diagonal of a matrix, Appl.
Numer. Math., 57 (2007), pp. 1214 � 1229.

[10] S. Birk and A. Frommer, A de�ated Conjugate Gradient method for multiple right hand
sides and multiple shifts, Numer. Algorithms, 67 (2014), pp. 507�529.

[11] L. Blackford et al., ScaLAPACK Users' Guide, SIAM, 1997.

23

[12] H. Calandra, S. Gratton, R. Lago, X. Vasseur, and L. M. Carvalho, A modi�ed
block �exible GMRES method with de�ation at each iteration for the solution of non-hermitian
linear systems with multiple right-hand sides, SIAM J. Sci. Comput., 35 (2013), pp. S345�S367.

[13] E. Chan, M. Heimlich, A. Purkayastha, and R. van der Geijn, Collective communi-
cation: Theory, practice, and experience: Research articles, Concurr. Comput. : Pract. Exper.,
19 (2007), pp. 1749�1783.

[14] T. Chan and W. Wan, Analysis of projection methods for solving linear systems with multiple
right-hand sides, SIAM J. Sci. Comput., 18 (1997), pp. 1698�1721.

[15] T. F. Chan and M. K. Ng, Galerkin projection methods for solving multiple linear systems,
SIAM J. Sci. Comput., 21 (1999), pp. 836�850.

[16] J. Chen, A de�ated version of the block Conjugate Gradient algorithm with an application to
Gaussian process maximum likelihood estimation, Tech. Rep. ANL/MCS-P1927-0811, Argonne
Nat'l. Lab., 2011.

[17] J. Chen, How accurately should I compute implicit matrix-vector products when applying the
Hutchinson trace estimator?, SIAM J. Sci. Comput., 38 (2016), pp. A3515�A3539.

[18] J. Chen, T. Li, and M. Anitescu, A parallel linear solver for multilevel Toeplitz systems
with possibly several right-hand sides, Parallel Comput., 40 (2014), pp. 408 � 424.

[19] J. Dutiné, M. Clemens, and S. Schöps, Multiple Right-Hand Side Techniques in Semi-
Explicit Time Integration Methods for Transient Eddy Current Problems., CoRR, (2016).

[20] A. El Guennouni, K. Jbilou, and H. Sadok, The block Lanczos method for linear systems
with multiple right-hand sides, Appl. Numer. Math., 51 (2004), pp. 243�256.

[21] C. Farhat, L. Crivelli, and F. X. Roux, Extending substructure based iterative solvers
to multiple load and repeated analyses, Comput. Methods in Appl. Mech. Eng., 117 (1994),
pp. 195�209.

[22] E. Gallopoulos, B. Philippe, and A. Sameh, Parallelism in Matrix Computations,
Springer, 2016.

[23] E. Gallopoulos and V. Simoncini, Iterative solution of multiple linear systems: The-
ory, practice, parallelism, and applications, in Proc. 2nd Int'l. Conf. Comput.Structures Tech.,
B. Topping and M. Papadrakakis, eds., Civil-Comp Press, Edinburgh, 1994, pp. 47�51.

[24] M. Gilge, IBM System Blue Gene Solution: Blue Gene/Q Application Development, IBM
Int'l. Tech. Supp. Org., 2nd ed., June 2013.

[25] G. H. Golub and R. Underwood, The block Lanczos method for computing elgenvalues, In
Mathematical Software III, J.R. Rice (Ed.), Academic Press, New York, (1977), pp. 361�377.

[26] P. Gosselet, D. Rixen, F.-X. Roux, and N. Spillane, Simultaneous FETI and block
FETI: Robust domain decomposition with multiple search directions, Int'l. J. Numer. Meth.
Engrng., 104 (2015), pp. 905�927.

24

[27] M. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides:
An introduction, In Modern Mathematical Models, Methods and Algorithms for Real World
Systems, Siddiqi AH, Du� IS, Christensen O (eds), Anamaya, New Delhi, 2007., pp. 420�447.

[28] M. Hestenes and E. Stiefel, Methods of Conjugate Gradients for solving linear systems,
J. Res. NBS, 49 (1952), pp. 409�436.

[29] M. Hutchinson, A stochastic estimator of the trace of the in�uence matrix for Laplacian
smoothing splines, Commun. Stat. Simul. Comput., 19 (1990), pp. 433�450.

[30] H. Ji and Y. Li, A breakdown-free block Conjugate Gradient method, BIT Numerical Mathe-
matics, (2016), pp. 1�25.

[31] H. Ji, M. Sosonkina, and Y. Li, An implementation of block conjugate gradient algorithm on
cpu-gpu processors, in 2014 Hardware-Software Co-Design for High Performance Computing,
Nov 2014, pp. 72�77.

[32] P. Jolivet and P.-H. Tournier, Block iterative methods and recycling for improved scal-
ability of linear solvers, in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC '16, Piscataway, NJ, USA, 2016, IEEE
Press, pp. 17:1�17:14.

[33] V. Kalantzis, C. Bekas, A. Curioni, and E. Gallopoulos, Accelerating data uncer-
tainty quanti�cation by solving linear systems with multiple right-hand sides, Numer. Algo-
rithms, 62 (2013), pp. 637�653.

[34] M. E. Kilmer and E. de Sturler, Recycling Subspace Information for Di�use Optical
Tomography, SIAM J. Sci. Comput., 27 (2006), pp. 2140�2166.

[35] G. Li, A block variant of the GMRES method on massively parallel processors., Parallel Com-
put., 23 (1997), pp. 1005�1019.

[36] X. Liu, E. Chow, K. Vaidyanathan, and M. Smelyanskiy, Improving the performance of
dynamical simulations via multiple right-hand sides, in 2012 IEEE 26th International Parallel
and Distributed Processing Symposium, May 2012, pp. 36�47.

[37] P. Lötstedt and M. Nilsson, A Minimal Residual Interpolation Method for Linear Equa-
tions with Multiple Right-Hand Sides, SIAM J. Sci. Comput., 25 (2004), pp. 2126�2144.

[38] A. Murli et al., A multi-grained distributed implementation of the parallel block Conjugate
Gradient algorithm, Concur. Comput.: Pract. Exper., 22 (2010), pp. 2053�2072.

[39] D. O'Leary, The block Conjugate Gradient algorithm and related methods, Lin. Alg. Appl.,
29 (1980), pp. 293 � 322.

[40] , Parallel implementation of the block Conjugate Gradient algorithm, Parallel Comput., 5
(1987), pp. 127 � 139.

[41] M. Parks, E. de Sturler, G. Mackey, D. Johnson, and S. Maiti, Recycling Krylov
subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 1651�1674.

25

[42] M. Parks, K. Soodhalter, and D. Szyld, A block recycled GMRES method with investi-
gations into aspects of solver performance, Tech. Report. 16-04-04, Temple U., April 2016.

[43] F. Roosta-Khorasani and U. Ascher, Improved Bounds on Sample Size for Implicit Matrix
Trace Estimators, Found. Comput. Math., 15 (2015), pp. 1187�1212.

[44] Y. Saad, On the Lanczos method for solving symmetric systems with several right hand sides,
Math. Comp., 48 (Apr. 1987), pp. 651�662.

[45] M. Selig, N. Oppermann, and T. Enÿlin, Improving stochastic estimates with inference
methods: Calculating matrix diagonals, Physical Rev. E, 85 (2012), pp. 021134�9.

[46] V. Simoncini and E. Gallopoulos, An iterative method for nonsymmetric systems with
multiple right-hand sides, SIAM J. Sci. Comput., 16 (1995), pp. 917�933.

[47] V. Simoncini and E. Gallopoulos, A hybrid block GMRES method for nonsymmetric
systems with multiple right-hand sides, J. Comput. Appl. Math., 66 (1996), pp. 457�469.

[48] C. Smith, A. Peterson, and R. Mittra, A Conjugate Gradient algorithm for the treatment
of multiple incident electromagnetic �elds, IEEE Trans. Ant. & Propag., 37 (1989), pp. 1490�
1493.

[49] A. Stathopoulos and K. Orginos, Computing and de�ating eigenvalues while solving mul-
tiple right-hand side linear systems with an application to quantum chromodynamics, SIAM J.
Sci. Comput., 32 (2010), pp. 439�462.

[50] M. Stein, J. Chen, and M. Anitescu, Stochastic approximation of score functions for
Gaussian processes, Ann. Appl. Stat., 7 (2013), pp. 1162�1191.

[51] G. V. G. Stevens, On the Inverse of the Covariance Matrix in Portfolio Analysis, The Journal
of Finance, 53 (1998), pp. 1821�1827.

[52] B. Vital, Etude de quelques méthodes de résolution de problèmes linéaires de grande taille sur
multiprocesseur, PhD thesis, Université de Rennes I, Rennes, Nov. 1990.

[53] W. Gropp, et al., MPI - The Complete Reference, The MPI Extensions, vol. 2, MIT Press,
1998.

[54] L. Wu, J. Laeuchli, V. Kalantzis, A. Stathopoulos, and E. Gallopoulos, Estimat-
ing the trace of the matrix inverse by interpolating from the diagonal of an approximate inverse,
J. Comput. Phys., 326 (2016), pp. 828 � 844.

26

