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Abstract
This paper proposes a new substructuring algorithm to approximate the algebraically
smallest eigenvalues and corresponding eigenvectors of a symmetric positive-
definite matrix pencil (A,M). The proposed approach partitions the graph associated
with (A,M) into a number of algebraic substructures and builds a Rayleigh-Ritz
projection subspace by combining spectral information associated with the inte-
rior and interface variables of the algebraic domain. The subspace associated with
interior variables is built by computing substructural eigenvectors and truncatedNeu-
mann series expansions of resolvent matrices. The subspace associated with interface
variables is built by computing eigenvectors and associated leading derivatives of
linearized spectral Schur complements. The proposed algorithm can take advantage
of multilevel partitionings when the size of the pencil. Experiments performed on
problems stemming from discretizations of model problems showcase the efficiency
of the proposed algorithm and verify that adding eigenvector derivatives can enhance
the overall accuracy of the approximate eigenpairs, especially those associated with
eigenvalues located near the origin.
KEYWORDS:
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1 INTRODUCTION

This paper considers the approximation of the nev ∈ ℕ smallest eigenvalues and associated eigenvectors (eigenpairs) of sym-
metric generalized eigenvalue problems Ax = �Mx, where the n × n matrices A and M are sparse and symmetric, and M
is symmetric positive-definite (SPD). Eigenvalue problems of this form appear in several problems in science and engineer-
ing such as the dynamic analysis of large Finite Element models1,2,3,4,5,6,7, spectral graph clustering8, and electronic structure
calculations9.
The standard approach to compute partial spectral factorizations of symmetric matrix pencils is to perform a Rayleigh-Ritz

projection onto a low-dimensional subspace which captures a good approximation of the invariant subspace associated with
the nev smallest eigenvalues10. Perhaps the most popular approach to build this subspace is by means of a Krylov subspace
algorithm, where the projection subspace is built in an iterative fashion and the Rayleigh-Ritz projection of the pencil (A,M)
is carried out implicitly11,12. For symmetric eigenvalue problems, the standard Krylov subspace technique used is a restarted
variant of the Lanczos iterative method13,14,15, often combined with a shift-and-invert transformation16. While Krylov subspace
methods are exceptionally powerful, their application becomes increasingly impractical as the value of nev increases, due to the
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cost associated with maintaining an orthogonal basis of the Krylov subspace even when restarting is used. Additionally, the
accuracy of the approximate eigenpairs returned by Krylov subspace approaches generally exceeds the requirements of several
applications in engineering and science, e.g., Finite Element modelling and analysis.
An approach that can take advantage of lower accuracy requirements in order to develop faster algorithms is that of algebraic

substructuring. Themain idea behind substructuring is to reduce the dimensionality of the eigenvalue problem by decomposing it
into several non-overlapping substructures which can be handled in parallel. In particular, each substructure can be embedded in
the subspace formed by its dominant eigenmodes, which gives rise to the ComponentMode Synthesis method (CMS)17,18,19,20,21.
In linear algebraic terms, CMS applies block Gaussian elimination to transform the eigenvalue problem associated with the
pencil (A,M) into its Craig-Bampton form22, followed by a computation of a number of eigenmodes from each substructure,
e.g., those associated with eigenvalues below a cut-off threshold. From a Partial Differential Equation perspective, algebraic
substructuring does not use any information regarding the physical geometry of the computational domain. Instead, interface
boundaries and connections between adjacent substructures are defined algebraically, and the graph associated with the pencil
(A,M) is partitioned into a number of algebraic substructures by a graph partitioner such as METIS23.
The Automated MultiLevel Substructuring (AMLS) algorithm24,25,26,27,28,29,5 is a multilevel extension of CMS in which the

interface variables form a separate substructure and the graph associated with the pencil (A,M) is partitioned recursively into
smaller substructures using nested dissection30. Once the leaf substructures are reached, AMLS computes a number of eigen-
modes from each substructure (e.g., those below a cut-off threshold) and traverses the elimination tree in an upwards fashion,
each time multiplying the interface eigenmodes at the current level with the corresponding block Gaussian elimination matrix.
Due to its ability to quickly achieve dramatic reductions in the size of Finite Element models, AMLS has been shown to be quite
efficient in frequency response and eigenvalue analysis of real-world engineering problems31,32,7,33,34,35. Nonetheless, the accu-
racy of the approximate eigenpairs returned by AMLS can be rather low for general algebraic eigenvalue problems. Moreover,
as AMSLS is based on nested dissection, its suitability for execution on distributed memory computing environments is limited.
The algorithm proposed in this paper shares similarities with substructuring algorithms such as AMLS and CMS but builds the

Rayleigh-Ritz projection subspace by exploiting spectral Schur complements24,36,37,38,39,40,41. More specifically, we partition the
adjacency graph associated with (A,M) into p ∈ ℕ algebraic substructures, where the vertices of each substructure are classified
either as interior, if they are connected only to vertices located in the same substructure, or interface, if they are also connected to
vertices located in neighboring substructures. The projection subspace associated with interior variables is built locally in each
substructure by computing substructural eigenvectors and truncating Neumann series expansions of resolvent matrices36,42. On
the other hand, the projection subspace associated with interface variables is built by following the technique in36, where it is
suggested to exploit derivatives of eigenvectors associated with the smallest eigenvalues of a zeroth-order approximation of the
spectral Schur complement. The algorithm developed in this paper extends the latter idea by computing the leading eigenvector
derivatives of first-order approximations instead. A numerical procedure to approximate these eigenvector derivatives is out-
lined in the supplement. Experiments on a few model problems suggest that the proposed algorithm can outperform techniques
based on computing solely eigenvectors of first-order linearizations of spectral Schur complements, e.g., AMLS. Moreover, the
proposed algorithm can achieve similar accuracy to that obtained by computing eigenvectors of second-order lizearizations, but
at a much lower computational cost. Extensions to recursive p-way partitionings are also considered. While not actively pursued
in this paper, the proposed algorithm can execute efficiently on distributed memory computing environments due to partitioning
by edge-separators.

1.1 Notation and organization
Throughout the rest of this paper we denote the eigenpairs of the matrix pencil (A,M) by (�i, x(i)

)
, i = 1,… , n. Without loss

of generality, we assume that all eigenvalues are positive and ordered as 0 < �1 ≤ �2 ≤… ≤ �n.1 The eigenvalues of the pencil
(A,M) will be collectively denoted by Λ(A,M), and we denote by range(K) and span(v1,… , vk) the column space of matrix
K and linear span of vectors v1,… , vk, respectively. Moreover, we set K = blkdiag(K1, ..., KN ) as the block diagonal matrix
created by aligning the input matrices K1,… , KN , along its diagonal. Finally, the identity matrix of size n will be denoted by
In while  (K) will denote the matrix stemming by setting each non-zero entry of K equal to one.
This paper is organized as follows. Section 2 discusses the concept of p-way edge-separators in algebraic substructuring.

Section 3 presents background on algebraic substructuring eigenvalue solvers with p-way partitioners and discusses current

1Alternatively, if �1 is negative, we work with the pencil (A + �M,M) for some real scalar � < �1.
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limitations. Section 4 presents a new algorithm to compute the algebraically smallest eigenvalues and associated eigenvectors of
symmetric matrix pencils. Section 5 presents numerical experiments which outline the performance of the proposed technique
and provide guidance on how to attain best performance. Finally, section 6 presents our concluding remarks.

2 GRAPH PARTITIONING AND ALGEBRAIC SUBSTRUCTURING

LetΩ ∶= ( ,) denote a graph with a set of vertices  and edges  ∶= {(�, �) | (�, �) ∈ 2 & � ≠ �}. A p-way edge-separator
of the graphΩ is defined as a set of edges s ⊆  whose removal from the edge set  divides the vertices of the graphΩ into p ∈ ℕ
non-overlapping sets 1,… ,p, such that the induced subgraphs (algebraic substructures) Ω1 ∶= (1,1),… ,Ωp ∶= (p,p),
are disjoint. A graph can have many such partitions, and a good edge-separator is one for which the cardinalities |l|, l =
1,… , p, are approximately constant, and, at the same time, the number of edges between vertices residing in different subgraphs
is small. Figure 1 shows a p-way partitioning of a graph that models a 4 × 10 grid. The edge-separator s is denoted by dashed
lines. The vertices of each induced subgraph Ωl , l = 1,… , p, can be classified either as interface, if the corresponding vertex
is incident to an edge included in the edge separator s, or interior otherwise.
Let now  (A) and  (M) denote the n× n matrices formed by setting the non-zero values of matrices A andM equal to one,

respectively. We can then exploit graph partitioning to create algebraic substructures by applying a p-way edge-separator to the
graph associated with the matrix  (A) +  (M). Interface vertices denote unknowns which are coupled with equations from
more than one substructures. In contrast, interior vertices denote unknowns which are coupled with equations only from the
substructure they reside. If we reorder the unknowns/equations associated with interior variables before those associated with
interface variables, and overwrite matrices A andM by their permutation, we obtain the following sparsity pattern:

A ∶=

⎛⎜⎜⎜⎜⎝

d1 ⋯ dp s
d1 B1 E1
⋮ ⋱ ⋮
dp Bp Ep
s ET

1 ⋯ ET
p C

⎞⎟⎟⎟⎟⎠
, M ∶=

⎛⎜⎜⎜⎜⎝

d1 ⋯ dp s
d1 MB1 ME1
⋮ ⋱ ⋮
dp MBp MEp
s MT

E1
⋯ MT

Ep
MC

⎞⎟⎟⎟⎟⎠
, (1)

where s = ∑p
l=1 sl = n−

∑p
l=1 dl = n− d, and dl and sl denote the corresponding number of interior and interface variables

of the lth substructure. The off-diagonal matrices have a special nonzero pattern of the form El =
[
0dl ,�l

, Êl , 0dl ,�l
]
, MEl

=[
0dl ,�l

, M̂El
, 0dl ,�l

]
, where �l =

∑k<l
k=1 sk, �l =

∑k=p
k>l sk, and 0�, denotes the zero matrix of size � ×  . Figure 2 shows

the sparsity pattern of matrix  (A) +  (M) after partitioning the graph associated with a Finite Element discretization of the
Laplace operator into p = 2 (left) and p = 4 (right) substructures.

3 P -WAY ALGEBRAIC SUBSTRUCTURING EIGENVALUE SOLVERS

This section discusses the main framework of algebraic substructuring eigenvalue solvers using p-way graph partitioners. For
simplicity, our discussion focuses on single-level partitionings.
Let matrices A andM shown in (1) be written in a compact 2 × 2 block form:

A =
[ d s

d B E
s ET C

]
, M =

[ d s
d MB ME
s MT

E MC

]
,

where B = blkdiag(B1,… , Bp), MB = blkdiag(MB1 ,… ,MBp), E = [ET
1 ,… , ET

p ]
T , andME = [MT

E1
,… ,MT

Ep
]T . Define

now the n × n block-lower triangular matrix

U =

[
Id

ETB−1 Is

]
.
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4-way partitioning with edge-separators

FIGURE 1 Illustration of a 4 × 10 grid partitioned into p = 2 (top) and p = 4 (bottom) substructures. Red filled circles
denote interface variables while blue filled circles denote interior variables. Dashed lines form the edge-separator s and indicate
couplings between interface variables residing in different substructures.
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FIGURE 2 Sparsity pattern of matrix  (A) +  (M) after partitioning with edge-separatos. Solid red lines indicate bound-
aries between interior variables. Dashed green lines indicate boundaries between interface variables located in neighboring
subdomains. Left: p = 2. Right: p = 4.

Applying a congruence transformation with the matrix U−1 results in
U−1AU−T (UTx

)
= � U−1MU−T (UTx

)
[
B
S

]
x̂ = �

[
MB ME −MBB−1E

MT
E − E

TB−1MB −MS

]
x̂,

(2)

where x̂ = UTx, and the s × s matrices S andMS are equal to
S = C − ETB−1E,
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and
MS = −MC − ETB−1MBB

−1E + ETB−1ME +MT
EB

−1E.

The eigenvalues of the pencil (A,M) are identical to those of (2), while the eigenvectors x and x̂ are related by the equation
x = U−T x̂. The matrix −MS is SPD by virtue of being a principal submatrix of the SPD matrix U−1MU−T .
Definition 1. Wewill denote the eigenpairs of the pencils (Bl ,MBl

), l = 1,… , p, and (S,−MS), by
(
�(l)i , v(l)i

)
, i = 1,… , dl ,

and (�j , yj
)
, j = 1,… , s, respectively, i.e.,

Blv
(l)
i = �(l)i MBl

v(l)i and Syj = −�jMSyj ,

where we order �(l)1 ≤ ⋯ ≤ �(l)dl
, and �1 ≤ ⋯ ≤ �s. The corresponding eigenvectors are scaled such that ‖v(l)i ‖MBl

= ‖yj‖−MS
=

1, respectively, where for any SPD matrix K we define ‖x‖K =
√
xTKx.

Let now �l ∈ ℕ be an integer such that 1 ≤ �l ≤ dl and define the matrices
V�l ,l =

[
v(l)1 ,… , v(l)�l

]
, Δ�l ,l = diag

(
�(l)1 ,… , �(l)�l

)
,

V = blkdiag
(
Vd1,1,… , Vdp,p

)
, Δ = blkdiag

(
Δd1,1,… ,Δdp,p

)
,

and
Y =

[
y1,… , ys

]
, Θ = diag

(
�1,… , �s

)
.

Following the above notation, the eigenvector x̂ can be expressed as x̂ =
[
V
Y

][
fB

fS

]
, where the vectors fB ∈ ℝd and

fS ∈ ℝs satisfy the eigenvalue equation
[
Δ
Θ

][
fB

fS

]
= �

[
Id V T (ME −MBB−1E

)
Y

Y T
(
ME −MBB−1E

)T V Is

][
fB

fS

]
,

and the individual entries are equal to (e.g., see43):
fBi =

�
�i − �

(
eTi V

T (ME −MBB
−1E

)
Y fS

)
, i = 1,… , d,

fSj =
�

�j − �

(
eTj Y

T (ME −MBB
−1E

)T V fB
)
, j = 1,… , s.

(3)

3.1 The Rayleigh-Ritz perspective
The expressions in (3) suggest that when B is non-singular, the modulus of the entries fBi and fSj will be relatively large when
� ≈ �i and � ≈ �j , and relatively small otherwise. Since we are interested in computing the nev smallest eigenvalues of the
pencil (A,M), the entries fBi and fSj should be relatively large when �i and �j are equal to the smallest eigenvalues of the matrix
pencils (Bl ,MBl

), l = 1,… , p, and (S,−MS), respectively.
More specifically, let

V�B = blkdiag
(
V�1,1,… , V�p,p

)
and Δ�B = blkdiag

(
Δ�1,1,… ,Δ�p,p

)
,

and define, for any 1 ≤ �S ≤ s, the matrices
Y�S =

[
y1,… , y�S

]
and Θ�S = blkdiag

(
�1,… , ��S

)
.

Ideally, the integers �1,… , �p, and �S satisfy �nev ≪ min
{
min

{
�(1)�1+1,… , �(p)�p+1

}
, ��S+1

}
. While �nev is unknown, in several

applications such as frequency response analysis, the eigenvalues �1,… , �nev , lie inside a real interval [�, �] which encapsulates
exactly nev ≪ n eigenvalues. Thus, in practice, the above integers ideally satisfy � ≪ min

{
min

{
�(1)�1+1,… , �(p)�p+1

}
, ��S+1

}
.

Following (3), the eigenvector x̂ can be approximated as

x̂ ≈

[
V�B

Y�S

][
f̃B1 ⋯ f̃B�B f̃

S
1 ⋯ f̃S�S

]T
,



6 Kalantzis ET AL

where the real scalars f̃B1 ,… , f̃B�B and f̃S1 ,… , f̃S�S , are provided by solving the eigenvalue problem
[
Δ�B

Θ�S

]
f̃ = �̃

[
Id V T

�B

(
ME −MBB−1E

)
Y�S

Y T�S
(
ME −MBB−1E

)
V�B Is

]
f̃ . (4)

The eigenvalue problem listed in (4) is equivalent to a Rayleigh-Ritz projection of the pencil (A,M) onto the subspace

 = range

([
Id −B−1E

Is

][
V�B

Y�S

])
= range

([
V�B −(Id − P�B )B

−1EY�S
Y�S

])
,

where P�B = V�BV
T
�B
MB denotes the MB-orthogonal projector onto range

(
V�B

). The Rayleigh-Ritz eigenvalue �̃i is an
approximation of the eigenvalue �i, i = 1,… , nev, with a corresponding approximate eigenvector x̃(i) =

[
V�B −B

−1EY�S
Y�S

]
f̃ (i).

The computational cost of non-recursive algebraic substructuring is dominated by the cost associated with the partial spectral
factorizations of the pencils (Bl ,MBl

), l = 1,… , p, and (S,−MS). These eigenvalue problems are solved by the Implicitly
Restarted Lanczos (IRL) with shift-and-invert16,13,12,15. On the other hand, the Rayleigh-Ritz eigenvalue problem (4) can be
solved by the appropriate dense matrix routine in LAPACK/ScaLAPACK44,45.
Algebraic substructuring with p-way partitioners is well-suited for distributed memory computing environments since the

�l , l = 1,… , p, sought eigenpairs of the pencil (Bl ,MBl
) can be computed independently of each other. Additionally, the pencil

(S,−MS) is naturally distributed by rows among the algebraic substructures due to partitioning by edge-separators. Thus, p can
be set equal to the number of processing elements. Alternatively, it is possible to try different values of p and keep the one for
which the matrix pencils (B1,MB1),… , (Bp,MBp), and (S,−MS) are roughly of the same size. This approach is geared towards
sequential architectures and is our default strategy. Nonetheless, deriving an optimal strategy to choose p is rather challenging,
since different values of p lead to different spectrums in the matrix pencils (B1,MB1),… , (Bp,MBp), and (S,−MS). Section 5
presents numerical experiments in which the number of partitions is varied.

4 AN ALGEBRAIC SUBSTRUCTURING ALGORITHM

This section describes an algorithm based on algebraic substructuring. The main idea is to perform a Rayleigh-Ritz projection
onto a subspace that can be written approximately as

 = 0 +1 +2 +…+nev , (5)
where 0, i ∈ ℝn, and x(i) ∈ 0 + i. The subspace 0 includes information that is common for all sought eigenpairs(
�i, x(i)

)
, i = 1,… , nev, while the subspacei contains information that targets specifically the eigenpair (�i, x(i)

). For the sake
of simplicity, throughout the rest of this section we describe the proposed algorithm assuming that �i ∉ Λ(B,MB), 1 ≤ i ≤ nev.

4.1 The eigenvector viewpoint
Let the eigenvector associated with the eigenvalue �i of the pencil (A,M) be partitioned as x(i) =

[
u(i)

y(i)

]
, where u(i) ∈ ℝd and

y(i) ∈ ℝs. The eigenvalue equation (A−�iM)x(i) = 0 can be then written as
[
B − �iMB E − �iME

ET − �iMT
E C − �iMC

][
u(i)

y(i)

]
= 0, from which

it follows that
x(i) =

[
−(B − �iMB)−1(E − �iME)y(i)

y(i)

]
, (6)

where y(i) is the eigenvector (up to scaling) associated with the zero eigenvalue of the singular matrix C − �iMC − (E −
�iME)T (B − �iMB)−1(E − �iME). By recalling the projection matrices P�B = V�BV T

�B
MB and P ⊥

�B
= Id − V�BV

T
�B
MB , we can

write (B − �iMB)−1 as
(B − �iMB)−1 = P�B (B − �iMB)−1 + P ⊥

�B
(B − �iMB)−1.
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The eigenvector x(i) can be then expressed as the sum of the following three terms:

x(i) = −

[
P�B (B − �iMB)−1(E − �iME)y(i)

]
−

[
P ⊥
�B
(B − �iMB)−1Ey(i)

y(i)

]
+

[
�iP ⊥

�B
(B − �iMB)−1MEy(i)

]
. (7)

Noticing that
P�B (B − �iMB)−1(E − �iME)y(i) ∈ range(V�B ),

we can write
x(i) ∈ range

([
V�B P

⊥
�B
(B − �iMB)−1Ey(i) �iP ⊥

�B
(B − �iMB)−1MEy(i)

y(i)

])
,

which, if we follow the notation in (5), leads to x(i) ∈ 0 +i, where

0 = range

([
V�B

])
, and

i = range

([
P ⊥
�B
(B − �iMB)−1Ey(i) �iP ⊥

�B
(B − �iMB)−1MEy(i)

y(i)

])
.

Unfortunately, computing a basis of i is impossible since it requires knowledge of both �i and y(i), i = 1,… , nev. The rest of
this section focuses on techniques to approximate i without requiring the knowledge of neither �i nor y(i).

4.2 Removing dependence on �i
Let �1,… , �l , satisfy the inequality �nev < min

{
�(1)�1+1,… , �(p)�p+1

}
. The matrix-valued function P ⊥

�B
(B−�MB)−1 is then analytic

for any � ∈ (
− ∞, min

{
�(1)�1+1,… , �(p)�p+1

}), and we can expand P ⊥
�B
(B − �iMB)−1 = P ⊥

�B
B−1

∞∑
j=0

[
�iMBB−1

]j , e.g., see46,40.
The idea now is to remove the dependence on �i by truncating P ⊥

�B
(B − �iMB)−1, albeit at the expense of an approximation.

Similar approaches are discussed in24,47 while a technique based on Chebyshev approximation is discussed in48.
Let �l =

∑j=l−1
j=1 dj and �l = ∑j=p

j=l+1 dj , denote the sum of interior variables of the substructures with an index lower and
higher than l, respectively. Then, for any  ∈ ℕ, the error introduced by approximating P ⊥

�B
(B − �iMB)−1 by its  -th order

expansion is equal to

P ⊥
�B

(
(B − �iMB)−1 − B−1

j= ∑
j=0

[
�iMBB

−1]j
)
= P ⊥

�B
B−1

∞∑
j= +1

[
�iMBB

−1]j ,

where the matrix on the right-hand side can be written as

P ⊥
�B
B−1

∞∑
j= +1

[
�iMBB

−1]j =
l=p∑
l=1

k=dl∑
k=�l+1

⎡⎢⎢⎣

0�l

v(l)k
0�l

⎤⎥⎥⎦

[
0�l

v(l)k 0�l
]T ⎡⎢⎢⎢⎣

∞∑
j= +1

�ji(
�(l)k − �i

)
�(l)jk

⎤⎥⎥⎥⎦
.

Proposition 1. Let �nev < min
{
�(1)�1+1,… , �(p)�p+1

}
. Then, for any i = 1,… , nev, and  > 0, the eigenvector x(i) can be written as

x(i) = −

[
P�B (B − �iMB)−1(E − �iME)y(i)

]
−
⎡⎢⎢⎢⎣

P ⊥
�B
B−1

j= ∑
j=0

[
�iMBB−1

]j Ey(i)
y(i)

⎤⎥⎥⎥⎦

+
⎡⎢⎢⎢⎣

�iP ⊥
�B
B−1

j= −1∑
j=0

[
�iMBB−1

]jMEy(i)
⎤⎥⎥⎥⎦

+ O
⎛⎜⎜⎜⎝

� +1i(
min

{
�(1)�1+1,… , �(p)�p+1

}
− �i

)
min

{
�(1)�1+1,… , �(p)�p+1

} 

⎫⎪⎬⎪⎭
,

(8)
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where the big-O term contains the asymptotic approximation error of x(i) as �i → 0.

Proof. By expanding P ⊥
�B
(B − �iMB)−1 = P ⊥

�B
B−1

∞∑
j=0

[
�iMBB−1

]j , we can write x(i) as

x(i) = −

[
P�B (B − �iMB)−1(E − �iME)y(i)

]
−
⎡⎢⎢⎢⎣

P ⊥
�B
B−1

∞∑
j=0

[
�iMBB−1

]j Ey(i)
y(i)

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

�iP ⊥
�B
B−1

∞∑
j=0

[
�iMBB−1

]jMEy(i)
⎤⎥⎥⎥⎦
.

Truncating the resolvent series expansion of (B − �iMB)−1 introduces an error only along the top subvector of x(i). This error
can be represented by a vector z ∈ ℝd ,

z = �iP ⊥
�B
B−1

∞∑
j= 

[
�iMBB

−1]jMEy
(i) − P ⊥

�B
B−1

∞∑
j= +1

[
�iMBB

−1]j Ey(i)

= �i
l=p∑
l=1

k=dl∑
k=�l+1

⎡⎢⎢⎣

0�l

v(l)k
0�l

⎤⎥⎥⎦

[
0�l

v(l)k 0�l
]T ⎡⎢⎢⎢⎣

∞∑
j= 

�ji(
�(l)k − �i

)
�(l)jk

⎤⎥⎥⎥⎦
MEy

(i)

−
l=p∑
l=1

k=dl∑
k=�l+1

⎡⎢⎢⎣

0�l

v(l)k
0�l

⎤⎥⎥⎦

[
0�l

v(l)k 0�l
]T ⎡⎢⎢⎢⎣

∞∑
j= +1

�ji(
�(l)k − �i

)
�(l)jk

⎤⎥⎥⎥⎦
Ey(i).

Since �i < min
{
�(1)�1+1,… , �(p)�p+1

}
, the term �ji(

�(l)k − �i
)
�(l)jk

is a decreasing function of k, ∀l, j. Moreover, as �i → 0, the

term � +1i(
�(l)k − �i

)
�(l) k

is the slowest converging term of the resolvent series expansion. The result then follows directly.

Equation (8) suggests that if either �i ≪ min
{
�(1)�1+1,… , �(p)�p+1

}
or  is sufficiently large, it is reasonable to replace P�B (B −

�iMB)−1 by its  -term Taylor series truncation. However, since �i and y(i) are not available, we can not simply sum the three
vector terms on the right-hand side of (8). Instead, we can approximate x(i) via a Rayleigh-Ritz projection onto the subspace
spanned by the union of linear combinations that span the vectors in (8). This subspace is of the form

̂i = range
([
Z0 Si,E Si,ME

])
,

where the individual matrices are defined as

Z0 =

[
V�B

]
,

Si,E =

[
P ⊥
�B
B−1Ey(i) ⋯ P ⊥

�B
B−1(MBB−1) Ey(i)

y(i)

]
,

Si,ME
=

[
P ⊥
�B
B−1MEy(i) ⋯ P ⊥

�B
B−1(MBB−1) −1MEy(i)

]
.

(9)

The matrices Si,E and Si,ME
have  +1 and  ( ≥ 1) columns, respectively. Moreover, the subspace on the right-hand side of

(9) is independent of �i.
Remark 1. Let  ≥ 1 and min

{
�(1)�1+1,… , �(p)�p+1

}
= 
�i for some real 
 > 1. Then, the error in the approximation of x(i)

resulting by truncating P ⊥
�B
(B − �iMB)−1 is of the order O

(
1

(
 − 1)
 

)
.
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4.3 Removing dependence on y(i)
The technique discussed in this section is a generalization of the approach described in36 where it is suggested to build the
Rayleigh-Ritz projection subspace by adding derivatives of eigenvectors associated with the nev smallest eigenvalues of the
Schur complement matrix. In this section we extend this approach to eigenvector derivatives of the pencil (S,−MS).
Let us define the univariate s × s matrix-valued function S ∶ � ∈ ℝ → ℝs×s,

S(� ) = C − �MC − (E − �ME)T (B − �MB)−1(E − �ME).

The matrix-valued function S(� ) is symmetric and analytic for any real � ∉ Λ(B,MB). Let now the univariate scalar-vector pair
(�j , yj) ∶ � ∈ ℝ → (�j(� ), yj(� )) ∈ {ℝ,ℝs} denote the jth eigenpair of the s × s symmetric generalized eigenvalue problem

S(� )y(� ) = −�(� )dS(� )
d�

y(� ), (10)
where the matrix-valued function

dS(� )
d�

∶= dS(� ) = −MC − (E − �ME)T (B − �MB)−1MB(B − �MB)−1(E − �ME)

+ (E − �ME)T (B − �MB)−1ME +MT
E (B − �MB)−1(E − �ME),

denotes the derivative of the matrix-valued function S(� ) with respect to � . Notice that dS(0) =MS .
The matrix derivative dS(� ) is symmetric and analytic for any real � ∉ Λ(B,MB). Moreover, dS(� ) is negative definite for

any � ∉ Λ(B,MB), and thus the eigenvalue problem in (10) is SPD. The eigenpair functions (�j(� ), yj(� )), j = 1,… , s, can be
arranged so that they are analytic for any � ∉ Λ(B,MB)49,50. In fact the latter holds for any � ∈ ℝ since the eigenvalues of the
matrix pencil (B,MB) are in fact eigenpoles of the eigenpairs (�j(� ), yj(� ))37.
Following (6), the scalar �i ∉ Λ(B,MB) is an eigenvalue of the pencil (A,M) if and only if the matrix pencil (S(�i),−dS(�i))

is singular. Thus, there exists an integer j(i) ∈ {1, 2,… , s} such that the eigenpair (�j(i)(�i), yj(i)(�i)) satisfies[
S(�i) + �j(i)(�i)dS(�i)

]
yj(i)(�i) = 0.

The eigenvector yj(i)(�i) associated with the eigenvalue �j(i)(�i) of zero modulus is equal (up to scaling) to the bottom s × 1
vector y(i) of the eigenvector x(i) associated with the eigenvalue �i. The value of the subscript j(i) is unknown, and can even
repeat, e.g., when s ≤ nev. Nonetheless, for typical problems of interest, the subscripts j(i) are generally unique for each �i.
Expanding the analytic vector-valued function yj(i)(� ), � ∈

[
0, �nev

], through its Taylor series about the origin, and noticing
yj(i)(�i) = y(i) and yj(i)(0) = yj(i), gives

y(i) = yj(i) +
∞∑
k=1

�ki
k!
dkyj(i), (11)

where dkyj(i) =
(
dkyj(i)(� )
d�k

)

�=0

denotes the kth derivative of the eigenvector yj(i)(� ), evaluated at the origin. The contribution
of the kth derivative dkyj(i) is weighted according to �ki . Thus, assuming that each derivative dkyj(i)(0), k ∈ ℕ, is bounded2, the
series in (11) generally converges faster for those eigenvalues of (A,M) which lie the closest to the origin, e.g., the nev smallest
ones.
Proposition 2. Let �nev < min

{
�(1)�1+1,… , �(p)�p+1

}
, and define the vector ŷ(i)� = yj(i) +

k=�∑
k=1

dkyj(i)�ki ∕k!. Then, for any i =
1,… , nev, and  > 0, the eigenvector x(i) can be written as

x(i) = −

[
P�B (B − �iMB)−1(E − �iME)ŷ(i)�

]
−
⎡⎢⎢⎢⎣

P ⊥
�B
B−1

j= ∑
j=0

[
�iMBB−1

]j Eŷ(i)�
ŷ(i)�

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

�iP ⊥
�B
B−1

j= −1∑
j=0

[
�iMBB−1

]jME ŷ(i)�
⎤⎥⎥⎥⎦

+ O
⎛⎜⎜⎜⎝

� +1i(
min

{
�(1)�1+1,… , �(p)�p+1

}
− �i

)
min

{
�(1)�1+1,… , �(p)�p+1

} 

⎞⎟⎟⎟⎠
+ O

⎛⎜⎜⎜⎝

��+1i

min
{
(�(1)�1+1,… , �(p)�p+1

}
− �i

⎞⎟⎟⎟⎠
,

2By this we mean that each individual entry of dkyj(i)(0) is bounded by a constant which is independent of k.
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where the big-O term contains the asymptotic approximation error of x(i) as �i → 0.
Proof. The first big-O term is obtained exactly as in Proposition 1. The proof follows by expanding P ⊥

�B
(B − �iMB)−1 =

P ⊥
�B
B−1

∞∑
j=0

[
�iMBB−1

]j , and noticing that the term P�B (B−�iMB)−1(E−�iME)ŷ(i)� now introduces an error that is proportional
to ��+1i .
The above expression tells us that approximating the exact eigenvector component y(i) by its truncation ŷ(i)� results in an

additional error of the order O (
��+1i

). This error term will be of the same order with the one in (8) as long as  = �. Therefore,
increasing  or � disproportionately from the other, e.g., as in24, does not lead to large asymptotic improvements.
In practice, the vector ŷ(i)� can not be formed explicitly due to �i being unknown. However, since ŷ(i)� ∈ span

(
yj(i),… , d�yj(i)

),
we set Y{i,�} =

[
yj(i),… , d�yj(i)

], and update (9) as

Z0 =

[
V�B

]
,

S{i,�, },E =

[
P ⊥
�B
B−1MBB−1EY{i,�} ⋯ P ⊥

�B
B−1(MBB−1) EY{i,�}

Y{i,�}

]
,

S{i,�, },ME
=

[
P ⊥
�B
B−1MEY{i,�} ⋯ P ⊥

�B
B−1(MBB−1) −1MEY{i,�}

]
.

(12)

The matrices S{i,�, },E and S{i,�, },ME
have (� + 1)( + 1) and (� + 1) ( ≥ 1) columns, respectively. Moreover, they do not

depend on neither �i nor y(i).

4.4 The proposed algorithm
Algorithm 4.1 summarizes the proposed eigenvalue solver for computing the nev smallest eigenvalues and associated eigenvec-
tors of the matrix pencil (A,M) such that �nev < � < �nev+1 where � ∈ ℝ is a known scalar. The Rayleigh-Ritz projection matrix
is equal to

Z =
[
Z0 Z1 ⋯ Znev

]
, (13)

where
Z0 =

[
V�B

]
, Zi =

[
S{i,�, },E S{i,�, },ME

]
.

By default, we set � =  = 1, since according to the analysis presented in Propositions 1 and 2 these values are sufficient to
lead to a quadratic error in the approximation of each sought eigenvector.
The parameters �1,… , �p, are typically set on-the-fly so that �(l)�l+1

corresponds to a scalar multiple of an upper bound of the
largest sought eigenvalue �nev . Nonetheless, determining an optimal choice for these values is not crucial, as we expect most
of the accuracy in the approximation of the nev sought eigenpairs of (A,M) to stem by the resolvent approximation in (9).
Therefore, we can stop computing additional eigenpairs of the pencil (Bl ,MBl

), l = 1,… , p, once �(l)j surpasses the upper
bound of �nev , since the matrix (B − �MB)−1 is then analytic in the interval � ∈ [−∞,… , �nev]. Thus, the values of �1,… , �p,
can be regarded as optional. The same idea applies to the pencil (S,−MS) for which we set �S = nev.
The total memory cost of Algorithm 4.1 for the default options is equal to nev(2n + 4d) +∑l=p

l=1 �ldl , leading to a Rayleigh-
Ritz eigenvalue problem of size 6nev +∑l=p

l=1 �l . WhenM is diagonal, we haveME = 0 and the total memory cost reduces to
nev(2n + 2d) +

∑l=p
l=1 �ldl . The size of the Rayleigh-Ritz eigenvalue problem is then equal to 4nev +∑l=p

l=1 �l .The computational complexity to solve the Rayleigh-Ritz eigenvalue problem is cubic with respect to the dimension projection
subspace. Therefore, if we choose∑l=p

l=1 �l = O(nev), the cost of this step runs at O(n3ev).
Remark 2. The Rayleigh-Ritz projection matrix produced by Algorithm 4.1 with parameter values  = 1, � = 1, and �S = nev,
can be expressed as

Z =

[
V�B P

⊥
�B
B−1EY P ⊥

�B
B−1MEY P ⊥�BB

−1MBB−1EY
Y

]
,

where Y = [y1,… , ynev , dy1,… , dynev]. WhenME = 0, we have P ⊥
�B
B−1MEY = 0.
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ALGORITHM 4.1. Enhanced substructuring algorithm

0a. Input: A,M , nev ∈ ℕ, (optionally) �1,… , �p, �S ∈ ℕ
0b. Reorder matrices A andM as in (1)
1a. For l = 1,… , p
2. Compute V�l ,l = eigs

(
Bl ,MBl

, �l
)

(�l is determined on-the-fly)
1b. End
3. Set V�B = blkdiag

(
V�1,1,… , V�p,p

)

4. If �S undefined, set �S = nev and compute V�S = eigs
(
S,−MS , nev

)
5. Set � = 1 and compute dy1,… , dynev by (A4)
6. Form matrix Z in (13) using  = 1
7. Compute the eigenpairs

(
�̃i, f̃ (i)

)
associated with the nev smallest

eigenvalues of the Rayleigh-Ritz pencil (ZTAZ,ZTMZ)
8. Approximate the eigenpair

(
�i, x(i)

)
, 1 ≤ i ≤ nev, of the pencil (A,M)

by
(
�̃i, Zf̃ (i)

)

4.5 Multilevel extensions
For high-dimensional discretizations, e.g., three-dimensional or higher, single-level partitionings with a large number of sub-
structures can lead to very large Schur complement matrices. An alternative is to reduce the number of substructures and consider
multilevel partitionings. More specifically, assume a multilevel setting with lev ∈ ℕ levels. Each algebraic substructure associ-
ated with interior valriables at level 1 ≤ k ≤ lev is then further partitioned into: a) p algebraic substructures, and b) their edge
separator. Figure 3 depicts a recursive partitioning of the 4 × 10 grid shown in Figure 1 . Here, we set lev = 2 and p = 2.
Dashed lines denote the edge-separator 0 associated with the first level. The algebraic substructures Ω1 and Ω2 are further par-
titioned into two algebraic substructures each, denoted by Ωi,1 and Ωi,2, and their respective edge separator 1 and 2, denoted
by the dotted lines.
Algorithm 4.1 can be combined with multilevel partitionings by performing Step 2 in Algorithm 4.1 through applying itself

recursively instead of shift-and-invert IRL. This recursion continues until the maximum given level lev is reached. However,
instead of returning approximate eigenpairs, the application of Algorithm 4.1 at the non-root levels returns the actual Rayleigh-
Ritz projection matrix.

Ω1,1

01 2
Ω2,1

Ω1,2 Ω2,2

2-way partitioning with 2-level edge-separators

FIGURE 3 Partitioning of a 4 × 10 grid into four subgraphs using nested edge-separators.

In terms of matrix sparsity pattern, let the graph associated with the matrix |Bl| + |MBl
|, 1 ≤ l ≤ p, be further partitioned

into p algebraic substructures. The rows and columns of the dl ×dl matrices Bl (similarly forMBl
) can be then permuted such
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FIGURE 4 Sparsity pattern of the problem shown in Figure 2 using a two-level partitioning. Left: p = 2. Right: p = 4.

that

Bl =

⎛⎜⎜⎜⎜⎜⎜⎝

d(l)1 ⋯ d(l)p s(l)

d(l)1 B(l)1 E(l)
1

⋮ ⋱ ⋮

d(l)p B(l)p E(l)
p

s(l)
(
E(l)
1

)T
⋯

(
E(l)
p

)T
Cl

⎞⎟⎟⎟⎟⎟⎟⎠

,

where dl = d(l)1 +⋯ + d(l)p + s(l).
Figure 4 plots the sparsity pattern of the matrix considered in Figure 2 , where the graph of  (A)+ (M) is now partitioned

into lev = 2 levels. Notice that interface variables at at the root level are not affected by partitionings at the second level since
we only partition interior variables.

4.5.1 Rayleigh-Ritz projection matrix for two-level partitionings
As an example, consider a two-level partitioning with p algebraic substructures at each level. In this case, the Rayleigh-Ritz
projection matrix Z associated with the pencil (A,M) becomes

Z =

[
Zr B−1EY B−1MEY B−1MBB−1EY

Y

]
, Zr = blkdiag

(
Z (1)
1 ,… , Z(1)

p

)
,

where Z (1)
l denotes the Rayleigh-Ritz projection matrix returned by applying Algorithm 4.1 to approximate the �l sought

eigenvectors of the pencil (Bl ,MBl
), l = 1,… , p.

The computational cost of the multilevel variant of Algorithm 4.1 depends on the value of �l , l = 1,… , p. In particular,
if  (nev) denotes the total computational cost of Algorithm 4.1 using the default settings, the total computational cost of the
multilevel variant is bounded by (p+1) (maxl=1,…,p �l). As a result, the value of �l is generally chosen inversely proportional
to the number of levels/subdomains. In the next section we demonstrate that even when maxl=1,…,p �l ≪ nev, Algorithm 4.1
can approximate the eigenpairs of the pencil (A,M) up to several digits of accuracy.

5 NUMERICAL EXPERIMENTS

Our experiments are conducted in a Matlab environment (version R2020b), using 64-bit arithmetic, on a single core of a com-
puting system equipped with an 2.3 GHz 8-Core Intel Core i9 processor and 64 GB of DDR4 system memory. Throughout this
section we are interested in computing the eigenpairs associated with the nev smallest eigenvalues of the pencil (A,M). Unless
mentioned otherwise, the number of sought eigenpairs will be set equal to nev = 100.
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FIGURE 5 Left: FE triangulation of a circular domain. Right: FE triangulation of a square domain.

The residual norm of an approximate eigenpair (�̃i, x̃(i)) of the true eigenpair (�i, x(i)) is equal to ‖‖‖Ax̃(i) − �̃iMx̃(i)‖‖‖2 ∕ ‖‖x̃
(i)‖‖M ,

while the relative eigenvalue error is computed as |||�̃i − �i
||| ∕ ||�i||.The matricesA andM considered throughout this section are derived from discretizations of the Dirichlet eigenvalue problem

Δu+�u = 0 in some domain Ω, whereΔ denotes the Laplace operator and u|)Ω = 0. The domainΩ is set to: a) a circular domain
centered at the origin with a radius of one, and b) a square domain centered at the origin with edge size of one. For the square
domain, we consider both linear Finite Element (FE) and Finite Difference (FD) discretizations. A snapshot of the triangulation
of each domain, using a target maximum edge size of 0.5 (circular mesh) and 0.1 (square mesh), is shown in Figure 5 . For the
FD discretization, we assume a 506 × 296 grid of the unit square. Further details can be found in Table 1 , while the size of the
Schur complement matrix as p varies is listed in Table 2 . While not actively pursued throughout our experiments, Algorithm
4.1 can be also applied to pencils stemming from adaptive finite element approaches51,52,53.

TABLE 1 n: size of (A,M), nnz(.): number of nonzero entries. The expression s(p) returns the number of interface variables
for the corresponding value of p.

# Matrix pencil n nnz(A)∕n nnz(M)∕n
1. Square FE mesh 45,064 6.96 6.96
2. Circular FE mesh 37,381 11.4 11.4
3. Rectangular FD mesh 149,766 4.99 1.00

TABLE 2 Size of the Schur complement matrix as a function of p.

Matrix pencil n p = 4 p = 8 p = 16 p = 32 p = 64
Square FE mesh 45,064 864 1,701 2,662 4,098 6,148
Circular FE mesh 37,381 854 1,554 2,522 3,826 5,666

Rectangular FD mesh 149,766 1,878 2,990 5,036 7,466 11,288

5.1 Computational aspects of Algorithm 4.1
5.1.1 Eigenvalues of the pencils (B,MB) and (S,−MS) as p varies
As the number of algebraic substructures increases, the number of interior (interface) variables decreases (increases) and vice
versa. A natural question is how the latter affects the spectrum of the pencils (S,−MS

) and (Bl ,MBl
), l = 1,… , p. While this
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FIGURE 6 Plot of the nev = 100 smallest eigenvalues of the pencils (B,MB) and (S,−MS) as p varies. The eigenvalues
�1,… , �nev , are also plotted as a reference.

can not be answered in general, a direct extensions of Cauchy’s interlacing property to symmetric (Hermitian) matrix pencils
(see54) shows that the eigenvalues of the pencils (S,−MS

) and (B,MB) satisfy the inequalities
�i ≤ �i ≤ �n−s+i, and �j ≤ �j ≤ �n−d+j , (14)

where i = 1,… , s, and j = 1,… , d. Therefore, increasing the number of algebraic substructures is more likely to lead to pencils
(Bl ,MBl

), l = 1,… , p, whose smallest eigenvalues might lie further away from the origin, in which case �l can be chosen
smaller. Similarly, decreasing the number of algebraic substructures is more likely to lead to a pencil (S,−MS) whose smallest
eigenvalues lie further away from the origin, and thus �S can be chosen smaller. Thus, setting proper values of �1,… , �p, and
�S , depends non-trivially on the graph partitioning of the graph associated with  (A) +  (M).
Figure 6 shows the nev = 100 algebraically smallest eigenvalues of the pencils (B,MB) and (S,−MS) for p ∈ {2, 8, 16, 32}.

Smaller values of p lead to fewer interface variables and a much higher spread of the smallest eigenvalues of the pencil (S,−MS)
compared to when p increases. For example, �nev is about fifty times larger than �nev when p = 2 but less than twice as large as
�nev when p = 32. Therefore, �S might be chosen smaller when p is small. The same observations can be made about the smallest
eigenvalues of the pencil (B,MB). As we observe experimentally, p = 2 is the optimal choice regarding the pencil (S,−MS)
as its eigenvalues are relatively further away from the origin. On the other hand, p = 2 is the most challenging case with respect
to the pencil (B,MB), in the sense that its smallest eigenvalues are relatively closer to the origin compared to larger values of p.

5.1.2 Cost of computing eigenvectors of the pencil (S,−MS)
We now focus on the computational cost associated with applying shift-and-invert IRL to compute the �S eigenpairs of the pencil
(S,−MS) stemming from partitioning a regular grid discretization into p perfectly balanced algebraic substructures using edge
separators. Shift-and-invert requires the factorization of the Schur complement matrix S where the size of the latter is bounded
by s = p√n (2D) and s = pn2∕3 (3D). The Cholesky factorization cost then runs at O(p3n3∕2) and O(p3n2), respectively, while
orthogonalization cost runs at O(p√n�2S) and O(pn2∕3�2S), respectively. For reference, the orthogonalization cost of applying
shift-and-invert IRL directly to the pencil (A,M) runs at O(nn2ev).Table 3 lists the number of iterations required by shift-and-invert IRL to compute the eigenpairs associated with the �S
smallest eigenvalues of the pencils (A,M) and (S,−MS), as p varies, for the problem “FDmesh". We also report the amount
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TABLE 3 Number of iterations (“iter") performed by shift-and-invert IRL to compute the eigenpairs associated with the �S
smallest eigenpairs of the pencils (A,M) and (S,−MS) for different values of p (values reported stand for the problem “506×296
FDmesh"). The amount of time spent on solving linear systems with the Schur complement matrix (“sol"), and orthogonalizing
the Krylov subspace basis (“orth"), are reported separately.

�S = 100 �S = 200 �S = 300

iter sol orth iter sol orth iter sol orth
p = 4 (s = 939) 201 0.40 0.01 401 0.97 0.06 601 1.53 0.13
p = 16 (s = 2, 518) 201 1.24 0.04 401 2.65 0.15 601 4.15 0.35
p = 64 (s = 5, 644) 251 2.53 0.13 401 4.70 0.34 601 7.76 0.95

(A,M) 301 5.92 3.94 501 10.8 11.5 751 16.7 27.6

of time spent on (as returned by Matlab’s internal timer): a) solving linear systems with the Schur complement matrix S, and
b) maintaining orthogonality of the Krylov subspace. As we can see from the table, substructuring can lead to a considerable
reduction in orthogonalization costs compared to applying shift-and-invert IRL to (A,M). This reduction is owed to the smaller
number of IRL iterations performed, as well as the application of orthogonalization to much shorter vectors than the size of the
pencil (A,M). The latter becomes more pronounced when the size of the pencil (S,−MS) grows slowly with increasing values
of p, e.g., discretizations of 2D domains. Similar results are also observed for the FE pencils listed in Table 1 .

5.2 Benchmarking Algorithm 4.1
Figure 7 plots the relative eigenvalue errors and corresponding residual norms achieved by Algorithm 4.1 when: a) �S ∈
{nev, 3nev, 5nev} and � = 0, and b) �S = nev and � = 1. The first option is equivalent to a p-way generalization of AMLS, while
the second option is equivalent to Algorithm 4.1. For both approaches we vary the number of partitions and computed interior
eigenmodes as (�, p) ∈ {(4, 64), (16, 16)}, where � = �1 = … = �p. In summary, exploiting eigenvector derivatives can lead to
similar or higher accuracy than that achieved by choosing as high as �S = 5nev. Nonetheless, the main advantage of Algorithm
4.1 over previous substructuring algorithms, e.g., AMLS, is not as much its higher accuracy as that it achieves the latter while
computing only nev eigenpairs of the pencil (S,−MS).
Figure 8 plots the relative eigenvalue errors and corresponding residual norms achieved by Algorithm 4.1 for the same

parameter choice as in the previous experiment, except that now we approximate P ⊥
�B
(B−�iMB)−1 using both  = 0 and  = 1.

The results plotted stand for the pencil “Square FEmesh" but similar behavior was observed for the rest of our test problems.
In summary, increasing the value of �S (or �) when  = 0 does not generally lead to major accuracy improvements due to the
inaccuracies in the part of the projection subspace associated with interior variables.

5.2.1 Comparisons against second-order linearizations
Recall that MS = dS(0), and thus the eigenvalue problem associated with the pencil (S,−MS) is equivalent to a first-order
linearization of the nonlinear eigenvalue problem S(� )y = 0 for � = 0. An idea suggested in24 is to replace span (y1,… , y�S

)
by span

(
w1,… , w�S

), where wj ∈ ℝs denotes the eigenvector associated with the jth smallest positive eigenvalue of the
generalized eigenvalue problem

[
0 Is
S −MS

][ w

w

]
= 


[
Is 0

0 d2S(0)

][ w

w

]
. This pencil is a second-order linearization of the nonlinear

eigenvalue problem S(� )y = 0, and leads to greater accuracy compared to using eigenvectors of the first-order linearization
(S,−MS). On the other hand, the size of the former eigenvalue problem is twice as large.
To compare the approach suggested in this paper against second-order linearizations, we consider a scenario where the eigen-

vector portions associated with interior variables are known explicitly, i.e., we pre-compute the top d × 1 subvectors of each
eigenvector x(i) =

[
u(i)

y(i)

]
, i = 1,… , nev, and inject them into the Rayleigh-Ritz projection subspace.We then perform aRayleigh-

Ritz projection where we set the projection subspace associated with interface variables equal to span
(
w1, w2,… , w�S

) (for
the second-order linearization) and span (y1, y2,… , ynev , dy1, dy2,… , ynev

) (for the proposed algorithm), respectively.
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FIGURE 7 Plot of relative eigenvalue errors and corresponding residual norms achieved by Algorithm 4.1 for different
combinations of � and p such that �p is constant.

Figure 9 presents the relative eigenvalue errors and corresponding residual norms achieved by the two different projection
matrices when p = 8. The number of computed eigenvectors in the second-order linearization is varied as �S ∈ {nev, 3nev, 5nev}.
In summary, exploiting eigenvector derivatives leads to an accuracy which is similar to that achieved by setting �S = 3nev but
lower than that achieved by setting �S = 5nev, especially for those eigenpairs associated with eigenvalues located further away
from the origin. From a computational perspective, the actual number of computed eigenpairs of the second-order linearization
is twice as large as �S due to the maximal indefiniteness of the pencil

([
0 Is
S −MS

]
,
[
Is 0

0 d2S(0)

])
. Moreover, as noted above, the

size of this pencil is 2s × 2s. As a result, the computational cost of Algorithm 4.1 is generally much smaller than that of the
second-order linearization.
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FIGURE 8 Plot of relative eigenvalue errors and corresponding residual norms achieved by Algorithm 4.1
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FIGURE 9 Comparing the interface projection subspace in Algorithm 4.1 against that of a second-order linearization of the
spectral Schur complement.

5.3 Two-level partitioning
Finally, we consider the accuracy of the approximate eigenpairs returned by the two-level variant of Algorithm 4.1 as the number
of algebraic substructures at each level varies. Figure 10 plots the relative eigenvalue errors and corresponding residual norms
returned by a two-level variant of Algorithm 4.1 as p = {2, 8, 16} and the main parameters are chosen as: a)  = 0, � = 0,
and �S = 2nev, and b)  = 1, � = 1, and �S = nev. For this set of experiments, the number of sought eigenpairs was set
equal to nev = 50. The number of eigenpairs approximated by the nested application of Algorithm 4.1 to each matrix pencil
(Bl ,MBl

), l = 1,… , p, was set to � = 64, 32, and � = 16, for the cases p = 2, 8, and p = 16, respectively. In summary, using
fewer levels leads to higher accuracy, especially for the case  = � = 1 since the subspace returned by the nested application
of Algorithm 4.1 is richer in relevant spectral information.

6 CONCLUSION

This paper presented an algebraic substructuring eigenvalue solver to approximate the algebraically smallest eigenvalues and
corresponding eigenvectors of symmetric matrix pencils. The proposed technique divides the graph associated with the matrix



18 Kalantzis ET AL

10 20 30 40 50
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10 20 30 40 50
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10 20 30 40 50
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10 20 30 40 50
10

-8

10
-6

10
-4

10
-2

10
0

10 20 30 40 50
10

-6

10
-4

10
-2

10
0

10
2

10 20 30 40 50
10

-8

10
-6

10
-4

10
-2

10
0

FIGURE 10 Relative eigenvalue errors and residual norms returned by a two-level variant of Algorithm 4.1.

 (A) +  (M) into a number of algebraic substructures and builds a Rayleigh-Ritz projection subspace by combining spectral
information associated with interior and interface variables. The subspace associated with interior variables is built by com-
puting substructural eigenvectors and truncated Neumann series expansions of resolvent matrices. The subspace associated
with interface variables is built by combining eigenmodes of linearized spectral Schur complements together with their leading
derivatives. Several practical details were discussed, including extensions to multilevel settings, and analysis of the total com-
putational cost. Experiments performed on problems stemming from discretizing the Dirichlet eigenvalue problem suggest that
the proposed technique can achieve several digits of accuracy while considerably reducing orthogonalization costs encountered
in standard applications of Krylov subspace eigenvalue solvers.
As part of future work, it would be interesting to develop a distributed memory version of the proposed algorithm in order

to fully take advantage of the underlying p-way partitioning. Such an implementation will also help evaluating the proposed
algorithm on real-world engineering problems. Another interesting direction is to reduce the computational complexity of the
proposed algorithm through combinations with hierarchical matrix approximation techniques55,56,57.
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APPENDIX

A A FORMULA FOR COMPUTING THE LEADING EIGENVECTOR DERIVATIVES

We now consider a computational procedure to approximate the leading derivatives of the eigenvectors y1,… , ynev . Differen-tiating both sides of the eigenvalue equation S(� )yi(� ) + �i(� )dS(� )yi(� ) = 0 with respect to the scalar � ∉ Λ(B,MB), and
evaluating at the origin gives (

S + �iMs
)
dyi = −

[
(1 + d�i)MS + �id2S(0)

]
yi ≡ b(i), (A1)

where
d2S(0)
2

= ETB−1MBB
−1MBB

−1E +MT
EB

−1ME −MT
EB

−1MBB
−1E − ETB−1MBB

−1ME ,
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and
d�i ∶= d�i = −1 + yTi d

2S(0)yi,
respectively. Solving the singular linear system in (A1) will determine dyi only up to the eigenvector direction yi. When �i is
simple, the true eigenvector derivative can be computed by solving the augmented linear system, e.g., see58,

[
S + �iMS −MSyi
−yTi MS 0

][
dyi
d�i

]
=
⎡⎢⎢⎣

(MS + �id2S(0))yi
1
2
yTi d

2S(0)yi

⎤⎥⎥⎦
,

leading to

dyi =
(1
2
yTi d

2S(0)yi
)
yi +

j=s∑
j=1, j≠i

[
yTj

(
MS + �jd2S(0)

)
yi

�i − �j

]
yj .

Nonetheless, the eigenvector direction yi is already included in the Rayleigh-Ritz projection subspace, i.e., yi ∈ range
(
Y{i,�}

).
Therefore, we can still focus on the solution of the singular linear system in (A1), and ignore the indeterminate direction yi. The
following discussion is a generalization of the approach described in36.
Let S = LLT whereL ∈ ℝs×s denotes a lower triangular matrix with real and positive diagonal entries. Then, we can re-write

(A1) as (
Is + �iL−1MSL

−T ) (LTx) = L−1b(i), (A2)
where we replace dyi with a generic vector x (since we no longer compute the exact dyi). The linear system in (A2) is sin-
gular but consistent, and the eigenvalues of the matrix Is + �iL−1MSL−T are equal to �k − �i

�k
, with associated eigenvectors

LT yk, k = 1,… , s. The solution in (A2) can be obtained by the MINRES iterative solver combined with deflation of the com-
puted eigenvectors y1,… , ynev

59,60. In particular, the solution process can be split into two phases, as outlined in36. During the
first phase we apply MINRES to the “deflated" linear system of equations

(Is + �iL−1MSL
−T )x = L−1b(i), (A3)

where  = I −W (W TW )−1W T , K = LT [y1,… , yi−1, yi+1,… , ynev], and W = (Is + �iL−1MSL−T )K . As soon as (A3) is
solved, the solution of the original linear system is formed as

x = L−T
(x̄ + (I −)b(i)) , (A4)

where  = I −K
(
W TW

)−1W T .
The effective condition number of the linear system in (A3) is equal to �i =

�nev+1
�s

(
�s − �i

�nev+1 − �i

)
. This expression reveals that

linear systems associated with smaller eigenvalues �i should converge faster, since their associated effective condition number
is smaller61.
Figure A1 illustrates the number of iterations required by deflated MINRES to approximate the eigenvector derivatives

dy1,… , dynev of a finite difference discretization of the Laplace operator, up to a relative residual norm of 10−4, where p =
{4, 8, 16, 32}. As expected, linear systems associated with smaller eigenvalues �i converge faster. Moreover, the number of
iterations is similar for all different values of p. In practice, it might be beneficial to deflate more than nev eigenvectors of the
pencil (S,−MS), i.e., nev + 10, so as to speed-up convergence for those eigenvector derivatives dyi associated with i ≈ nev.
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FIGURE A1 Number of iterations required by deflated preconditioned MINRES.


