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Abstract. This paper presents a Domain Decomposition-type method for solving real symmet-
ric (Hermitian) eigenvalue problems in which we seek all eigenpairs in an interval [α, β], or a few
eigenpairs next to a given real shift ζ. A Newton-based scheme is described whereby the problem is
converted to one that deals with the interface nodes of the computational domain. This approach
relies on the fact that the inner solves related to each local subdomain are relatively inexpensive.
This Newton scheme exploits spectral Schur complements and these lead to so-called eigen-branches,
which are rational functions whose roots are eigenvalues of the original matrix. Theoretical and
practical aspects of domain decomposition techniques for computing eigenvalues and eigenvectors
are discussed. A parallel implementation is presented and its performance on distributed computing
environments is illustrated by means of a few numerical examples.

Key words. Domain decomposition, Spectral Schur complements, Eigenvalue problems, New-
ton’s method, Parallel computing.

1. Introduction. We are interested in the partial solution of the symmetric
eigenvalue problem

(1.1) Ax = λx,

where A is an n×n symmetric (Hermitian) matrix and we assume that it is large and
sparse. We assume that the eigenvalues λi, i = 1, . . . , λn of A are labeled increasingly.
By “partial solution” we mean one of the two following scenarios:

• Find all eigenpairs (λ, x) of A where λ belongs to the sub-interval [α, β] of
the sprectrum ([α, β] ⊆ [λ1, λn]).

• Given a shift ζ ∈ R and an integer k, find the eigenpairs (λ, x) of A for
which λ is one of the k closest eigenvalues to ζ. A similar problem is the
computation of the k eigenpairs of A located immediately to the right (or to
the left) of the given shift ζ.

The interval [α, β] can be located anywhere inside the region [λ1, λn]. When α := λ1
or β := λn, we will refer to the eigenvalue problem as extremal, otherwise we will refer
to it as interior.

It is typically easier to solve extremal eigenvalue problems than interior ones.
Methods such as the Lanczos algorithm [22] and its more sophisticated practical
variants such as the Implicitly Restarted Lanczos (IRL) [24], the closely related Thick-
restart Lanczos [39, 43], the method of trace minimization [35], or the method of
Jacobi-Davidson [37], are powerful methods for solving eigenvalue problems associated
with extremal eigenvalues. However, these methods become expensive for interior
eigenvalue problems, typically requiring a large number of matrix-vector products or
the use of a shift-and-invert strategy to achieve convergence.

A standard approach for solving interior eigenvalue problems is the shift-and-
invert technique where A is replaced by (A−σI)−1. By this transformation, eigenval-
ues of A closest to σ become extremal ones for (A − σI)−1 and a projection method
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of choice, be it subspace iteration or a Krylov-based approach, will converge (much)
faster. However, a factorization is now necessary and this seriously limits the size
and type of problems that can be efficiently solved by shift-and-invert techniques.
For example, matrix problems that stem from discretizations of Partial Differential
Equations on 3D computational domains are known to generate a large amount of fill-
in. An alternative for avoiding the factorization of (A− σI) is to exploit polynomial
filtering which essentially consists of replacing (A−σI)−1 by a polynomial in A, ρ(A).
The goal of the polynomial is to dampen eigenvalues outside the interval of interest.
Such polynomial filtering methods can be especially useful for large interior eigen-
value problems where many eigenvalues are needed, see [11, 2]. Their disadvantage
is that they are sensitive to uneven distributions of the eigenvalues and the degree of
the polynomial might have to be selected very high in some cases. Recently, contour
integration methods, like the FEAST method [32] or the method of Sakurai-Sugiura
[34], have gained popularity. The more robust implementations of these utilize direct
solvers to deal with the complex linear systems that come from numerical quadrature
and this again can become expensive for 3D problems. When iterative methods are
used instead, then the number of matrix-vector products can be high as in the case
of polynomial filtering.

This paper takes a different perspective from all the approaches listed above by
considering a Domain Decomposition (DD) type approach instead. In this framework,
the computational domain is partitioned into a number of (non-overlapping) subdo-
mains, which can then be treated independently, along with an interface region that
accounts for the coupling among the subdomains. The problem on the interface re-
gion is non-local, in the sense that communication among the subdomains is required.
The advantage of Domain Decomposition-type methods is that they naturally lend
themselves to parallelization. Thus, a DD approach starts by determining the part of
the solution that lies on the interface nodes. The original eigenvalue problem is then
recast into an eigenvalue problem that is to be solved only on the interface nodes,
by exploiting spectral Schur complements. This converts the original large eigenvalue
problem into a smaller but nonlinear eigenvalue problem. This problem is then solved
by a Newton iteration.

The idea of using Domain Decomposition for eigenvalue problems is not new.
Though not formulated in the framework of DD, the paper by Abramov and Chishov
(see discussion in [38]) is the earliest we know that introduced the concept of Spectral
Schur complements. Other earlier publications describing approaches that share some
common features with our work can be found in [26, 27, 20, 31, 9, 15]. The articles
[26, 27] establish some theory when the method is viewed from a Partial Differential
Equations viewpoint. The paper [20] also resorts to Spectral Schur complements, but
it is not a domain decomposition approach. Rather, it exploits a given subspace, on
which the Schur complement is based, to extract approximate eigenpairs. Although
not presented from a spectral Schur complements viewpoint, the articles [9, 15] discuss
condensation techniques applied to the Raviart-Thomas and discontinuous Galerkin
approximation of second order elliptic eigenvalue problems. Condensation leads to the
solution of non-linear, but smaller, eigenvalue problems and the techniques described
therein have similarities with spectral Schur complement-based approaches.

A well-known example of a Domain Decomposition approach for approximating
the lowest eigenvalues of a symmetric real matrix is represented by the Automated
MultiLevel Substructuring method (AMLS) [5]. The main similarity between our
approach and AMLS is that they both exploit Schur complements. Apart from this,
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the two approaches are quite different. AMLS uses only one shift (e.g. at the origin)
and then constructs a good subspace with which to perform a Rayleigh-Ritz projection
to compute many eigenpairs with this one shift. The result is often a fast computation
but moderate accuracy. Because the Schur complement is constructed explicitly, the
method tends to perform quite well for problems that have a 2D geometry. Our
approach is at the other extreme: the shift changes at each Newton step and our
method essentially computes one eigenpair at a time. In our case, the Spectral Schur
complement is never formed explicitly. In addition, the resulting eigenpair is computed
with as high accuracy as required.

The primary goal of this paper is to further extend current understanding of Do-
main Decomposition methods for eigenvalue problems, as well as to develop practical
related algorithms. As pointed out earlier, Domain Decomposition goes hand-in-hand
with a parallel computing viewpoint and we implemented the proposed scheme in
distributed computing environments by making use of the PETSc framework [3].

The paper is organized as follows: Section 2 discusses background concepts on
Domain Decomposition and distributed eigenvalue problems. Section 3 proposes a
Newton scheme for computing a single eigenpair of A and presents some analysis.
Section 4 discusses a generalization to the case of computing multiple eigenpairs of
A. Section 5 discusses our parallel implementation within the Domain Decompo-
sition framework and Section 6 presents numerical experiments on both serial and
distributed environments. Finally, a conclusion is given in Section 7.

2. Background: Distributed eigenvalue problems. In a Domain Decompo-
sition framework, we typically begin by subdividing the problem into p parts with the
help of a graph partitioner [33, 17, 6, 30, 7, 21]. Generally, this consists of assigning
sets of variables to subdomains. Figure 2.1 shows a common way of partitioning a
graph, where vertices are assigned to subdomains or partitions. A vertex is a pair
equation-unknown (equation number k and unknown number k) and the partitioner
subdivides the vertex set into p partitions, i.e., p non-intersecting subsets whose union
is equal to the original vertex set. In this situation some edges are cut between domains
and so this way of partitioning a graph is also known as edge-separator partitioning.

Fig. 2.1. A classical way of partitioning a graph.

In this paper we partition the problem using an edge-separator as is done in
the pARMS [25] linear system solver for example. Once the matrix is partitioned,
three types of unknowns appear: (1) Interior unknowns that are coupled only with
local equations; (2) Local interface unknowns that are coupled with both non-local
(external) and local equations; and (3) External interface unknowns that belong to
other subdomains and are coupled with local interface variables. Local points in each
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subdomain are reordered so that the interface points are listed after the interior points.
Thus, each local piece xi of the eigenvector is split into two parts: the subvector ui
of internal vector components followed by the subvector yi of local interface vector
components (we assume i = 1, . . . , p). Let subdomain i have di interior variables and
si interface variables, i.e., the length of vectors ui and yi is di and si respectively. We
denote by Bi ∈ Rdi×di the matrix that represents the couplings between the interior
variables, i.e., between variables in ui. Similarly, we denote by Êi ∈ Rdi×si the
matrix that maps interface variables of subdomain i to interior variables of subdomain
i, and by Ci ∈ Rsi×si the matrix that represents the couplings between the interface
variables of subdomain i, i.e., between variables in yi. Finally, we let Eij ∈ Rsi×sj
be the matrix representing the couplings between external interface unknowns from
subdomain j and local interface variables of subdomain i. Note that Eij is nonlocal in
that it acts on variables that are external to domain i and produces local (interface)
variables.

Then, the equation (A− λI)x = 0 can be written locally as

(2.1)

(
Bi − λI Êi
ÊTi Ci − λI

)

︸ ︷︷ ︸
Ai

(
ui
yi

)

︸ ︷︷ ︸
xi

+

(
0∑

j∈Ni
Eijyj

)
= 0, i = 1, . . . , p.

Here, Ni is the set of indices for subdomains that are neighbors to the subdomain i.
The term Eijyj is a part of the product which reflects the contribution to the local
equation from the neighboring subdomain j. The result of this multiplication affects
only local interface equations, which is indicated by a zero in the top part of the
second term of the left-hand side of (2.1).

2.1. The interface and Spectral Schur complement matrices. The local
equations in (2.1) are naturally split in two terms: the first term (represented by the
term Aixi) involves only local variables and the second contains couplings between
these local variables and external interface variables. The second row of the equations
in (2.1) is

ÊTi ui + (Ci − λI)yi +
∑

j∈Ni

Eijyj = 0.

This couples all the interface variables with the local (interior) variable ui. The
action of the operation on the left-hand side of the above equation on the vector of
all interface variables, i.e., the vector yT = [yT1 , y

T
2 , · · · , yTp ], can be gathered into the

following matrix C ∈ Rs×s

(2.2) C =




C1 E12 . . . E1p

E21 C2 . . . E2p

...
...

. . .
...

Ep1 Ep2 . . . Cp


 ,

where Eij = 0 if j /∈ Ni, and s = s1 + s2 + · · ·+ sp.

Thus, if we stack all interior variables u1, u2, · · · , up into a vector u, in this order,
and we reorder the equations so that the ui’s are listed first followed by the yi’s, we
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obtain a reordered global eigenvalue problem that has the following form:

(2.3)




B1 E1

B2 E2

. . .
...

Bp Ep
ET1 ET2 . . . ETp C




︸ ︷︷ ︸
PAPT




u1
u2
...
up
y




= λ




u1
u2
...
up
y




where P ∈ Rn×n is the corresponding permutation matrix. The matrix Ei, i =
1, . . . , p, Ei ∈ Rdi×s, in (2.3) is an expanded version of the corresponding matrix Êi
defined earlier and used in (2.1). More specifically, we have Ei = [0di,ℓi , Êi, 0di,νi ],

where ℓi =
∑j<i

j=1 sj , νi =
∑j=p
j>i sj , where 0χ,ψ denotes the zero matrix of size χ× ψ.

Note in particular that we have Eiy = Êiyi. The coefficient matrix of the system
(2.3) is of the form

(2.4) A =

(
B E
ET C

)
, E = [ET1 ET2 . . . ETp ]

T ,

where B ∈ Rd×d, E ∈ Rd×s, d = d1+d2+ · · ·+dp, and we have kept the same symbol
A to represent the unpermuted matrix in (1.1). An illustration of (2.4) for p = 4
subdomains is shown in Figure 2.2.

Fig. 2.2. Laplacian matrix partitioned in p = 4 subdomains and reordered according to equation
(2.3).

2.2. Spectral Schur complements. Schur complement techniques eliminate
interior variables to yield equations associated with the interface variables only. Speci-
fically, we can eliminate the variable ui from (2.1), which gives ui = −(Bi−λI)−1Êiyi
and upon substitution in the second equation, we get:

(2.5) Si(λ)yi +
∑

j∈Ni

Eijyj = 0
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where Si(λ) ∈ Rsi×si is the “local” spectral Schur complement

(2.6) Si(λ) = Ci − λI − ÊTi (Bi − λI)−1Êi.

The equations (2.5) for all subdomains i = 1, . . . , p constitute a nonlinear eigen-
value problem, one that involves only the interface unknown vectors yi. This problem
has a block structure:

(2.7)




S1(λ) E12 . . . E1p

E21 S2(λ) . . . E2p

...
...

. . .
...

Ep1 Ep2 . . . Sp(λ)




︸ ︷︷ ︸
S(λ)




y1
y2
...
yp




︸ ︷︷ ︸
y

= 0.

The diagonal blocks in this system, the local Schur complement matrices Si(λ), are
dense in general. The off-diagonal blocks Eij , which are identical with those of the
local system (2.1), are sparse. Note that the above Spectral Schur complement is
nothing but the Spectral Schur complement associated with the decomposition (2.4),
i.e., we have:

(2.8) S(λ) = C − λI − ET (B − λI)−1E,

where S(λ) ∈ Rs×s. In other words, the expressions for S(λ) in (2.7) and (2.8) are
identical, the first being more useful for practical purposes and the second more useful
for theoretical derivations. Spectral Schur complements were discussed also in [5, 4].

If we can solve the global Schur complement problem (2.7) then the solution to
the global eigenproblem (1.1) would be trivially obtained by substituting the yi’s into
the first part of (2.1), i.e., by setting for each subdomain:

(2.9) ui = −(Bi − λI)−1Êiyi, i = 1, . . . , p.

3. Solving the spectral Schur complement problem. Our next focus is on
the solution of the Spectral Schur Complement problem (2.7). The problem we have
is to find a pair (λ, y(λ)) satisfying:

(3.1) S(λ)y(λ) = 0.

Then, λ is an eigenvalue of A with y(λ) being the bottom part of the associated
eigenvector x. For an arbitrary value σ ∈ R (which we will call a shift), we consider
the eigenvalue problem

(3.2) S(σ)y(σ) = µ(σ)y(σ)

where µ(σ) and y(σ) ∈ Rs denote the eigenvalue of smallest magnitude of S(σ) and
corresponding eigenvector, respectively. The matrix S(σ) has s eigenvalues and they
will be denoted as µi(σ), i = 1, . . . , s in a sorted (algebraic) ascending order. Each
µi(σ) is a function of σ which we refer to as the i’th eigenbranch of S(σ). We will
denote the corresponding eigenvectors of S(σ) as y(i)(σ) ∈ Rs, i = 1, . . . , s.

The question now becomes how to find a σ for which S(σ) is singular. One idea,
adopted in [26], is to consider the equation det(S(σ)) = 0 but this is not practical
for large problems. On the other hand, S(σ) is singular exactly when at least one
of µi(σ), i = 1, . . . , s is zero. With this, the original eigenvalue problem in (1.1)
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can be reformulated as that of finding a shift σ such that the eigenvalue of smallest
magnitude, µ(σ), of S(σ) is zero. Thus, µ(σ) is treated as a non-linear function and
we are interested in obtaining a few of its roots, e.g., those located inside a given
interval [α, β]. To find these roots, we would like to exploit a Newton scheme and for
this the derivative of each eigenbranch µi(σ), i = 1, . . . , s is needed.

Proposition 3.1. The eigenbranches µi(σ), i = 1, . . . , s are analytic at any
point σ /∈ Λ(B), where Λ(B) denotes the spectrum of B. The derivative of each
eigenbranch at these points is given by

(3.3)
dµi(σ)

dσ
=

(S′(σ)y(i)(σ), y(i)(σ))

(y(i)(σ), y(i)(σ))
= −1− ‖(B − σI)−1Ey(i)(σ)‖22

‖y(i)(σ)‖22
,

where S(σ) = C − σI − E⊤(B − σI)−1E.

Proof. For each eigenbranch µi(σ), i = 1, . . . , s, differentiating (3.2) we get (the
dependence on the variable (σ) is omitted throughout the proof):

(3.4) S′y(i) + Sy(i)
′
= µ′

iy
(i) + µiy

(i)′ .

Taking inner products with y(i) yields:

(3.5) (S′y(i), y(i)) + (Sy(i)
′
, y(i)) = µ′

i(y
(i), y(i)) + µi(y

(i)′ , y(i))

Observe that (Sy(i)
′
, y(i)) = (y(i)

′
, Sy(i)) = (y(i)

′
, µiy

(i)) = µi(y
(i)′ , y(i)). Then the

above equality becomes (S′y(i), y(i)) = µ′
i(y

(i), y(i)) which gives the first part of (3.3).
The second part is obtained by differentiating S(σ) with respect to σ:

(3.6) S′(σ) = −I − ET (B − σI)−2E.

To finalize the proof, we have to show that S′(σ), µ′
i(σ) and y

(i)′(σ) exist. Since
σ /∈ Λ(B), S(σ) is analytic and its derivative is well defined. Eigenvalues µi(σ) of
S(σ) define branches. In the neighborhood of a single eigenvalue, µi(σ) is analytic
as is its associated eigenprojector [18]. From this it also follows that an associated
analytic eigenvector ‘branch’ can be defined (individual eigenvectors are only defined
up to scaling – but the eigenprojector Pi(σ) is analytic and so Pi(σ)w, which is an
eigenvector for an arbitrary vector w, is analytic). Because the results established in
[18] are valid for semi-simple eigenvalues, and multiple eigenvalues are semi-simple in
the Hermitian case, the same statement can be made for multiple eigenvalues. For
multiple eigenvalues, additional details can be found in [23].

Equation (3.6) shows that the matrix S′(σ) is negative definite, with all its eigen-
values being finite when σ /∈ Λ(B), i.e., σ is not an eigenvalue of B (the eigenvalues
of B will also be referred to as poles [18]). As a result, the derivatives of the eigen-
branches µi(σ), i = 1, . . . , s in (3.3) are always negative and the following corollary
is immediate.

Corollary 3.2. For any σ located in an interval containing no poles, all eigen-
branches µi(σ), i = 1, . . . , s, are strictly decreasing.

In the following, we will drop the index i and will concentrate on µ(σ), which
denotes the eigenvalue of smallest magnitude of S(σ). Note that µ(σ) is always one
of the s eigenvalues of S(σ) and satisfies µ(σ) = min |µi(σ)|, i = 1, . . . , s. Moreover,
we will assume that the eigenvalues of A and B do not overlap.
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3.1. An algorithm for computing a single eigenpair. Assume that we are
interested in computing a single eigenpair (λ, x) of A, say the one closest to ζ ∈ R.
Then, a straightforward algorithm based on Newton iteration is as follows.

Algorithm 3.1. Newton-Spectral Schur complement
1. Select σ := ζ
2. Until convergence Do:
3. Compute µ(σ) = Smallest eigenvalue in modulus of S(σ)
-. along with the associated unit eigenvector y(σ)
4. Set η := ‖(B − σI)−1Ey(σ)‖2
5. Set σ := σ + µ(σ)/(1 + η2)
6. End

Algorithm 3.1 does not specify how to extract the eigenpair (µ(σ), y(σ)) in Step
3 for any σ. All that is needed is the eigenvalue of S(σ) closest to zero and its
associated eigenvector. This is a perfect setting for a form of inverse iteration [16].
Alternatively, we can use the Lanczos method with partial re-orthogonalization [36]
and perform as many steps as needed to compute (µ(σ), y(σ)). Note that in the
latter case, Lanczos will operate on vectors of shorter length (equal to s, the number
of interface nodes). In this paper we only consider approximating (µ(σ), y(σ)) by
the inverse iteration approach in which an iterative scheme is used for solving the
linear systems (of the form S(σ)w = b). If we were to solve these systems by using
an exact factorization of the Schur complement the whole scheme would be quite
similar to a form of Rayleigh Quotient Iteration (RQI) [12] with a DD framework for
solving the related linear systems exactly. This is not practical for large 3D problems
because Schur complements can be quite large in these cases. More details about
using iterative linear solvers in our problem setting will be discussed in Section 6.

Figure 3.1 visualizes the first few eigenbranches of a 2D Laplacian partitioned in
p = 4 subdomains in the interval [0.0, 0.10] (solid blue lines). The red circles denote
the eigenvalues of A, which also are the roots of the eigenbranches. Figure 3.1 also
shows an example of Algorithm 3.1 when it is applied for the computation of one
of the two algebraically smallest eigenvalues. The dashed arrowed lines depict the
Newton steps as σ is updated. The black solid arrows indicate a hop to a different
eigenbranch (see Algorithm 4.1).

3.1.1. An equivalent update scheme for Newton’s method. Since Algo-
rithm 3.1 is Newton’s method, we expect that if the initial shift σ is “close enough” to
an eigenvalue λ, Algorithm 3.1 will converge quadratically to λ [19]. By Proposition
3.1, each eigenbranch is an analytic branch and the first derivative is always non-zero
(bounded from above by -1). In addition the second derivative of µ is finite for any
σ /∈ Λ(B). Therefore, when the scheme converges, it will do so quadratically.1

It is interesting to link quantities of the algorithm that are related to the Schur
complement with those of the original matrix A. We can think of y(σ) as the interface
part of a global approximate eigenvector. This global approximate eigenvector, which
we write in the form x̂(σ) = [u(σ)T , y(σ)T ]T , can be obtained by substituting y(σ) in
(2.9) and replacing λ by its approximation σ:

(3.7) x̂(σ) =

[
−(B − σI)−1Ey(σ)

y(σ)

]
.

1To be more accurate, the scheme will converge with the same rate as Newton’s method does.
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Fig. 3.1. Eigenbranches µi(σ) for i = 1, · · · , 7 obtained from a Domain Decomposition applied
to a Laplacian matrix partitioned in 4 subdomains (solid lines). The dashed arrowed lines depict
the Newton steps performed by Algorithm 3.1 when computing one of the two algebraically smallest
eigenvalues. The black solid arrows indicate a hop to a different eigenbranch when Algorithm 4.1 is
used.

The approximate eigenpair (σ, x̂(σ)) has a special residual. Indeed,

(3.8) (A− σI)x̂(σ) =

(
B − σI E

E⊤ C − σI

)(
−(B − σI)−1Ey(σ)

y(σ)

)
=

(
0

µ(σ)y(σ)

)
.

In addition, its Rayleigh quotient is equal to the next σ obtained by one Newton step
as is stated next.

Proposition 3.3. Let σj+1 = σj + µ(σj)/(1 + η2j ) be the Newton update at

the j’th step of Algorithm 3.1, where we set ηj = ‖(B − σjI)
−1Ey(σj)‖2. Then,

σj+1 = ρ(A, x̂(σj)), where ρ(A, x̂(σj)) is the Rayleigh Quotient of A associated with
the vector x̂(σj) defined by (3.7).

Proof. For simplicity, set x̂ ≡ x̂(σj) and assume, without loss of generality, that
‖y(σj)‖ = 1. We write ρ(A, x̂) = σj + ρ(A−σjI, x̂). The right term of the right-hand
is

(3.9) ρ(A− σjI, x̂) =
x̂⊤(A− σjI)x̂

x̂⊤x̂
.

The expressions (3.7) and (3.8) show that x̂⊤(A− σjI)x̂ = µ(σj) while x̂
⊤x̂ = 1+ η2j .

Thus, ρ(A− σjI, x̂) = µ(σj)/(1 + η2j ) and so ρ(A, x̂) = σj + µ(σj)/(1 + η2j ) = σj+1.
Note that the equivalent update formula discussed in Proposition 3.3 is primarily

of theoretical interest. In practice, we use the update formula provided in Step 5 of
Algorithm 3.1 and which avoids the extra Matrix-Vector multiplication with matrix
A.

When µ(σ) = 0 then σ is an eigenvalue of A. We expect that the closer µ(σ)
is to zero, the closer σ should be to an eigenvalue of A. In fact, the relation (3.8)
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immediately shows that:

(3.10)
‖Ax̂(σ)− σx̂(σ)‖

‖x̂(σ)‖ =
|µ(σ)|√
1 + η2

.

where η = ‖(B − σI)−1Ey(σ)‖.
4. Computing eigenpairs in an interval. The framework developed in Al-

gorithm 3.1 computes a single eigenpair of A. It is possible to extend Algorithm 3.1
for computing more than one eigenpairs, e.g., when searching for all eigenpairs inside
a given interval [α, β], or a few consecutive eigenpairs next to a given shift ζ ∈ R.
The main question is how to select a good starting point for the next unconverged
eigenpair of A as soon as the current eigenpair has converged. For this, we need to
take a closer look at the eigenbranches of the spectral Schur complement.

4.1. Eigenbranches across the poles. The left subfigure of Figure 4.1 shows
a few relevant eigenvalues of S(σ) for a sample 2D Laplacian, when σ ∈ [2.358, 2.4].
The separating dashed spikes are eigenvalues of B, i.e., poles of S(σ). An interesting
property is revealed when observing the eigenvalues across the borderlines (poles).
While the matrix S(σ) is not defined at a pole, the plot reveals that individual eigen-
values may exist and, quite interestingly, seem to define differentiable branches across
the poles. Informally, we can say that in this situation S(σ) has one infinite eigenvalue
and s− 1 finite ones. This behavior is illustrated in the right subfigure of Figure 4.1
where we plot eigenbranches µ1(σ) and µ2(σ). As σ approaches the pole of µ1(σ)
from the left side, µ1(σ) descends to −∞ while µ2(σ) (as well as the rest of the
eigenbranches not shown) crosses the pole in a continuous fashion.
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Eigs 26 through 32 in pole−interval [2.3580 2.4000]
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−15
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σ

µ i(σ
)

Eigs 1 through 2 in [0.0 0.5]

Fig. 4.1. Left: Eigenbranches µi(σ) for i = 26, · · · , 32 obtained from a Domain Decomposition
applied to a Laplacian matrix partitioned in p = 4 subdomains. The eigenvalues are followed on 3
different panels bordered by poles. There is one eigenvalue of A in the second panel and two in the
third. Right: Eigenbranches µ1(σ) and µ2(σ) as σ approaches the pole of µ1(σ).

To explain this observation, let θ1, . . ., θd be the eigenvalues of B with associated
eigenvectors v1, . . . , vd, and consider S(σ) defined by (2.8), which we write it in the
following form

(4.1) S(σ) = C−σI −ET (B−σI)−1E = C−σI−
d∑

j=1

wjw
T
j

θj − σ
, with wj ≡ ET vj .

We assume for simplicity that θk is a simple eigenvalue in what follows. The operator
S(σ) is not formally defined when σ equals one eigenvalue θk of B. However, it can
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be defined on a restricted subspace, namely the subspace {wk}⊥ and eigenvalues of
this restricted operator are finite.

Accordingly we let ŵk = wk/‖wk‖ and define the orthogonal projector

(4.2) Pk = I − ŵkŵ
T
k

and

(4.3) Sk(σ) ≡ C − σI −
d∑

j=1,j 6=k

wjw
T
j

θj − σ
, Sk,|(σ) = [PkSk(σ)Pk]|wk

⊥ ,

where[PkSk(σ)Pk]|wk
⊥ denotes the restriction of PkSk(σ)Pk to the subspace orthogo-

nal to wk.
The operator Sk,|(σ) defined above is an operator from Rs−1 to itself that acts only

on vectors of wk
⊥. We denote its eigenvalues, also labeled increasingly, by µj(Sk,|(σ)).

Apart from an extra zero eigenvalue the spectrum of PkSk(σ)Pk is identical with that
of Sk,|(σ). The next theorem examines closely the eigenvalues of S(σ) as σ converges
to θk from the left or the right direction.

Theorem 4.1. When θk is a simple eigenvalue then the following equalities hold:
(4.4)

lim
σ→θ−k

µj(σ) =

{
−∞ if j = 1
µj−1(Sk,|) if j > 1

, lim
σ→θ+k

µj(σ) =

{
+∞ if j = s
µj(Sk,|) if j < s

.
Proof. Consider the first part of the theorem (σ → θ−k ) and assume that σ is in

an interval [σ0, θk] that contains no other poles than θk. We define for any nonzero
vector r the two Rayleigh quotients:

(4.5) ρ(σ, r) =
(S(σ)r, r)

(r, r)
, ρk(σ, r) =

(Sk(σ)r, r)

(r, r)
.

Note that from (4.1) we have the following relation for a vector r of unit length:

(4.6) ρ(σ, r) = ρk(σ, r) −
(wTk r)

2

θk − σ
.

For j = 1 we have µ1(σ) = minr 6=0 ρ(σ, r). By taking r = wk/‖wk‖ in (4.6), the
term −(wTk r)

2/(θk − σ) can be made arbitrarily large and negative when σ → θ−k .
Hence, the minimum of ρ(σ, r) will have a limit of −∞ when σ → θ−k . The vector wk
can be viewed as an eigenvector associated with this infinite ‘eigenvalue’.

Consider now the situation when j > 1. We first show that the limit of µj(σ) is
finite. For this we invoke the Min-Max theorem [14] :

(4.7) µj(σ) = min
Uj ,dim(Uj)=j

max
r∈Uj,‖r‖=1

ρ(σ, r).

Take any subspace Uj of dimension j. Since Uj is of dimension j > 1 and dim{wk}⊥ =
s− 1, there is a nonzero vector in the intersection Uj ∩{wk}⊥. Note also that for any
σ ∈ [σ0, θk], Sk(σ) has no poles and so the term ρk(σ, r) is bounded from below by
a certain (finite) value η for any r of unit length and any σ ∈ [σ0, θk]. Therefore,

max
r∈Uj,‖r‖=1

ρ(σ, r) ≥ max
r∈Uj∩ {wk}⊥,‖r‖=1

ρ(σ, r) = max
r∈Uj∩ {wk}⊥,‖r‖=1

ρk(σ, r) ≥ η.
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This is true for all Uj of dimension j > 1 and all σ ∈ [σ0, θk]. As a result, µj(σ)
which is the smallest of these maxima over all Uj ’s of dimension j, is also ≥ η and so
is its limit as σ → θ−k . Thus limσ→θ−k

µj(σ) ≥ η.

Now let j > 1 and y(j)(σ) be a (unit) eigenvector of S(σ) associated with the
eigenvalue µj(σ). For each σ we have

µj(σ) = ρ(σ, y(j)(σ)) = ρk(σ, y
(j)(σ))− (y(j)(σ)Twk)

2

θk − σ
.

Thus, (y(j)(σ)Twk)
2 = (θk − σ)(ρk(σ, y

(j)(σ)) − µj(σ)), and since ρk(σ, y
(j)(σ)) is

bounded for σ ∈ [σ0, θk] and µj(σ) ≥ η, we must have limσ→θ−k
wTk y

(j)(σ) = 0.

Multiplying the equality S(σ)y(j)(σ) = µj(σ)y
(j)(σ) on both sides from the left

by Pk and making use of the identities y(j)(σ) = Pky
(j)(σ) + (ŵTk y

(j)(σ))ŵk , and
PkS(σ)Pk = PkSk(σ)Pk, yields the relation:

PkSk(σ)Pky
(j)(σ) − µj(σ)Pky

(j)(σ) = −PkSk(σ)(ŵTk y(j)(σ))ŵk .

The above expresses the residual of the approximate eigenpair (µj(σ), Pky
(j)(σ))

with respect to PkSk(σ)Pk.
2 When σ → θ−k , the operator PkSk(σ)Pk converges

to PkSk(θk)Pk which is now well defined. Since limσ→θ−k
(ŵTk y

(j)(σ)) = 0, the above

residual converges to zero. Therefore, the eigenpair (µj(σ), Pky
(j)(σ)) converges to

an eigenpair of PkSk(θk)Pk, which is a trivial extension of Sk,|.
Now we know that each j-th eigenvalue, with j > 1, converges to an eigenvalue

of Sk,|, but it is left to determine to which one. Consider the case j = 2, i.e., the

eigenpair (µ2(σ), y
(2)(σ)). The eigenvalue µ2(σ) is the minimum of ρ(σ, r) over the

set of all vectors r that are orthogonal to y(1)(σ). Therefore,

(4.8) µ2(σ) = min{ρ(σ, t) |t = (I − y(1)(σ)y(1)(σ)T )r 6= 0, r ∈ Rs}.

Since limσ→θ−k
y(1)(σ) = ŵk (in direction) the limit of the above quantity as σ → θ−k

is

lim
σ→θ−k

µ2(σ) = min{ρk(θk, t) |t = (I − ŵkŵ
T
k )r, r ∈ Rs}.

The Rayleigh quotient ρk(θk, t) which can be written as

ρk(θk, t) =
(Pkr)

T [PkSk(θk)Pk](Pkr)

(Pkr)T (Pkr)T

must be minimized over all vectors r such that Pkr be nonzero, i.e., over all vectors
t = Pkr that are nonzero members of {wk}⊥. The minimum of this quantity is the
smallest eigenvalue of Sk,|. The proof for the other eigenvalues is similar except that
for the jth eigenvalue we now need to use cumulative projectors, i.e., t in (4.8), is to
be replaced by

t = (I − y(j−1)(σ)y(j−1)(σ)T ) · · · (I − y(2)(σ)y(2)(σ)T )(I − y(1)(σ)y(1)(σ)T )r.

The proof for the second part of the theorem is a trivial extension of the above
proof, provided the eigenvalues are labeled decreasingly instead of increasingly for

2Note that Pky
(j)(σ) = P 2

k y
(j)(σ)
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the proof. Then we would obtain (for this labeling) limσ→θ+k
µ1(σ) = +∞ and

limσ→θ+k
µj(σ) = µj−1(Sk,|) when j > 1. Relabeling the eigenvalues increasingly

yields the result by noting that Sk,| has s− 1 eigenvalues.
For simplicity we assumed that θk has multiplicity equal to one, but the result

can be easily extended to more general situations.

4.2. The inertia theorem in a domain decomposition framework. The
tool of choice for counting the number of eigenvalues of a Hermitian matrix in a given
interval is the Sylvester inertia theorem [14]. However, this theorem requires the
factorization of the whole matrix A and there are instances when this factorization
is too expensive to compute. A sort of distributed version of the theorem can be
exploited and it can be obtained from a block factorization of the matrix. Recall
that the inertia of a matrix X is a triplet [ν−(X), ν0(X), ν+(X)] consisting of the
numbers of negative, zero, and positive eigenvalues of X , respectively. In the following
proposition, the sum of two inertias is defined as the sum of these inertias viewed as
vectors of 3 components.

Proposition 4.2. Let σ be a shift such that σ /∈ Λ(B). Then the inertia of
A− σI is the sum of the inertias of B − σI and S(σ).

Proof. The result follows immediately by applying the congruence transformation:

(
I

−ET (B − σI)−1 I

)(
B − σI E
ET C − σI

)(
I −(B − σI)−1E

I

)
=

(
B − σI

S(σ)

)
.

Since congruences do not alter inertias the inertia of A is the same as that of the
block-diagonal matrix at the end of the equation shown above.

The inertia of S(σ) can be computed either by explicitly forming and factorizing
S(σ) or by using the Lanczcos algorithm and computing all negative eigenvalues. This
result can now be utilized to count the number of eigenvalues of A in the interval [α, β].

Corollary 4.3. Assume that neither α nor β is an eigenvalue of B and let νa be
the number of negative eigenvalues of S(α), νβ the number of non-positive eigenvalues
of S(β), and µ(α,β)(B) the number of eigenvalues of B located in (α, β). Then the
number of eigenvalues of A in [α, β] is equal to νβ − να + µ(α,β)(B).

Proof. Using the previous proposition, the number of eigenvalues of A that are
≤ β is equal to ν−(S(β)) + ν−(B − βI) + ν0(S(β)) + ν0(B − βI). By assumption β is
not an eigenvalue of B so ν0(B − βI) = 0. The number of eigenvalues of A that are
< α is equal to [ν−(S(α)) + ν−(B − αI)]. Taking the difference yields,

ν−(S(β)) + ν0(S(β))− ν−(S(a)) + [ν−(B − βI)− ν−(B − αI)] = νβ − να + µ(α,β)(B)

as desired.
From a computational point-of-view, B is block-diagonal, and thus µ(α,β)(B) =∑p

i=1 µ(α,β)(Bi), with each µ(α,β)(Bi), i = 1, . . . , p being computed in parallel. The
quantities να and νβ can be computed either by using a direct factorization for S(α)
and S(β) or by using the Lanczos method. It is also possible to generalize Corollary
4.3 to the situation where α or β are eigenvalues of B, interpreting S(σ) in the way
discussed in subsection 4.1. The result is omitted.

4.3. Branch-hopping algorithm. The discussion above suggests an algorithm
for computing all eigenvalues in an interval [α, β] by selecting the shifts carefully. We
start with a shift σ equal to α then iterate as in Algorithm 3.1 until convergence. Once
the first eigenvalue has converged we need to catch the next branch of eigenvalues.
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Since we are moving from left to right we will just select the next positive eigenvalue of
S(σ) after the zero eigenvalue µ(σ) which has just converged. We would then extract
the corresponding eigenvector and compute the next σ by Newton’s scheme as in
Algorithm 3.1. The “Branch-hopping” idea just described above can be formulated
as an iterative procedure and is listed as Algorithm 4.1.

Algorithm 4.1. Branch hopping Newton-Spectral Schur complement

0. Given α, β. Select σ = α
1. While σ < β
2. Until convergence Do:
3. Compute µ(σ) = Smallest eigenvalue in modulus of S(σ)
-. along with the associated unit eigenvector y(σ)
4. If (|µ(σ)| < tol)
5. σ and associated eigenvector have converged – save them
6. Obtain µ(σ) = smallest positive eigenvalue of S(σ)
-. along with the associated unit eigenvector y(σ)
7. End
8. Set η := ‖(B − σI)−1Ey(σ)‖2
9. Set σ := σ + µ(σ)/(1 + η2)
9+. % If convergence took place at this step, optionally
-. % refine σ using a few steps of Inverse Iteration on (A− σI)
10. End
11. End

Similarly to Algorithm 3.1, Step 3 in Algorithm 4.1 is performed using a form of
the inverse iteration algorithm with the matrix S(σ), in which an iterative method
(with or without preconditioning) is invoked to solve the linear systems. Algorithm
4.1 can be optionally tied with some form of inverse iteration to obtain a more accu-
rate shift σ for the next target eigenvalue before the Newton scheme is applied. This
is the purpose of Step “9+” right after Step 9. If this optional step is used, Algorithm
4.1 reverts back to Newton’s iteration as soon as the approximate eigenvalue is con-
sidered accurate enough. More sophisticated schemes to determine when to switch
from inverse iteration back to Newton’s iteration can be found in [40]. Regarding
the computation of the smallest positive eigenvalue in Step 6 of Algorithm 4.1, this
step is also computed using inverse iteration, with the difference that the computed
eigenvector y(σ) that corresponds to the eigenvalue of smallest magnitude in Step 3
is explicitly deflated to avoid repeated convergence. See [13] for a detailed discussion
on deflation for symmetric linear systems.

Example. In Figure 4.2 we plot the eigenpairs’ residual norm obtained by Algo-
rithm 4.1 when searching for the k = 8 consecutive eigenvalues (from left to right
only) next to a pre-selected shift ζ ∈ R for a 2D Laplacian. We used two different
shifts, ζ = 2.0 and ζ = 4.15. The horizontal line visualizes the threshold where the
norm of the eigenpairs’ relative residual is equal to tol = 1e-8. The quadratic con-
vergence of the scheme is evident in both plots where the number of correct digits is
roughly doubled at each step. Note also that Algorithm 4.1 provides a good starting
point for the next targeted eigenpair.

4.3.1. Influence of the number of subdomains. In a Newton scheme, func-
tions that are nearly linear lead to faster convergence. We often observe that the
shape of the eigenbranches tend(s) to become closer to linear as the number p of
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Fig. 4.2. Residual norm for a few consecutive eigenpairs next to an initial shift ζ ∈ R when
using Algorithm 4.1. Left: ζ = 2.0. Right: ζ = 4.15.
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Fig. 4.3. Eigenbranches µ1(σ), . . . , µ9(σ) in the interval [0.0, 0.11] for a 2D Laplacian. Left:
p = 4. Right: p = 16.

subdomains increases. This behavior is illustrated in Figure 4.3 with a small example
of a 2D discretized Laplacian. We used p = 4 and p = 16 subdomains and plot the
eigenbranches µ1(σ), . . . , µ9(σ) in the interval [0.0, 0.11]. Notice the difference in the
shape of the eigenbranches: for p = 16 the eigenbranches are closer to straight lines
while for p = 4 the eigenbranches tend to bend more. The explanation behind this
phenomenon is similar to the discussion in Section 4.1. Consider a specific eigenbranch
µi(σ) that has two poles. When the poles of µi(σ) are far apart, the shape of the
eigenbranch µi(σ) is closer to linear in the middle of the interval defined by its poles.
This follows by the expression of the derivative µ′

i(σ), as given by (3.3), in conjunction
with Theorem 4.1. The value of µ′

i(σ) changes fast when σ approaches one the poles
of µi(σ), while, on the other hand, varies slowly when σ lies away the poles. 3 As a
consequence, if the root of µi(σ) is located far from its poles, e.g. located towards the
middle of the interval defined by the two poles of µi(σ), we should expect Algorithm
4.1 (Algorithm 3.1) to converge faster.

The important question now is whether increasing the number of subdomains p
will result in a more favorable distribution of the poles of the eigenbranches under

3In practice, the rate of change of µi(σ) depends on the distance (σ−θ)2 with θ the pole of µi(σ)
lying the closest to σ.
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Fig. 4.5. Eigenbranches µ1(σ), . . . , µ9(σ) in the interval [−0.3, 0.1] for a perturbed 2D Lapla-
cian. Left: p = 4. Right: p = 16.

consideration, e.g., the poles of the eigenbranches which have a root inside [α, β]. For
simplicity, assume that each sought eigenvalue λ is simple and that its corresponding
eigenbranch has two poles. For a given number of p subdomains, B is a d×d (leading)
principal submatrix of A, and, as a consequence of the Courant-Fischer theorem, the
eigenvalues of B will interlace those of A as λj ≤ θj ≤ λn+j−d, j = 1, . . . , d. Larger
values of p will result in smaller values for d and fewer poles in general, with each
interval [θj , θj+1], j = 1, . . . , d − 1 now potentially including more eigenvalues of A.
As a result, it is less likely that the poles of the eigenbranch of interest will be located
near its root λ.

As an illustration consider again the first few eigenbranches of the same 2D Lapla-
cian used in Figure 4.3. The left subfigure of Figure 4.4 shows the distribution of the
eigenvalues of B inside the interval [0.0, 0.5]. Notice the difference between p = 4 and
p = 16. In the latter case the few smallest eigenvalues of B, which are also poles of the
first few eigenbranches, have shifted towards the interior of the spectrum and lie in a
greater distance from the interval [0.0, 0.1]. This explains why the shape of the first
few eigenbranches in Figure 4.3 is closer to linear in the interval [0.0, 0.1] if p = 16.
The above experiment is repeated by adding a pseudo-random perturbation to the
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diagonal of the same 2D Laplacian. The spectral distributions for the few smallest
eigenvalues of B as p varies are shown in the right subfigure of Figure 4.4. Note that
in this case the perturbation led to negative eigenvalues and the interval of interest for
the perturbed case was set to [−0.3, 0.5]. We can see that larger values of p force the
few smallest eigenvalues of B, which again are the poles of the first few eigenbranches,
to move towards the interior of the spectrum. Thus, using p = 16 results in the first
few eigenbranches having a shape closer to that of a linear function than with p = 4
and this is verified in Figure 4.5.

4.4. Other practical considerations. Before we conclude the discussion on
the algorithmic scheme developed in Algorithm 4.1, let us comment on a few practical
issues. First, Algorithm 4.1 (as well as Algorithm 3.1) can be extended to compute
eigenpairs of A which correspond to multiple eigenvalues. A multiple eigenvalue λ of
A translates into a multiple (with the same degree of multiplicity) zero eigenvalue of
S(λ). Each eigenvector of S(λ) associated with one of the zero eigenvalues can be
used to extract a separate eigenvector of A. The eigenvectors of S(λ) can be recovered
using a subspace version of inverse iteration.

Furthermore, after hopping to a new eigenbranch, the value of σ might not be close
enough to the next targeted eigenvalue. Usually this results to slower convergence of
the Newton scheme. In the extreme case, Algorithm 4.1 might miss the targeted
eigenvalue and converge to a nearby one. The inertia tool discussed in Section 4.2
can then be run periodically to determine whether the scheme proceeds as expected.

Finally, we should also remark that the Branch-hopping scheme computes each
eigenpair in a sequential manner, i.e., one after the other. If too many eigenpairs are
sought, then it could be more efficient to use techniques which solve the non-linear
symmetric (Hermitian) eigenvalue problem of the form S(λ)y(λ) = 0 for several eigen-
pairs simultaneously, see for example [41, 42] for some recent developments towards
this direction based on preconditioned block methods.

5. The Branch-hopping Newton scheme in a parallel framework. In
a parallel implementation we assume that the matrix A is distributed across a set
of p processors, with each processor holding a certain part of its rows as the local
system (2.1). The smallest eigenvalues µ(σ) of each spectral Schur complement S(σ)
can be computed by inverse iteration, which relies on solving linear systems of the
form S(σ)w = b. The linear solves are performed by an iterative matrix-free method,
e.g., a Krylov subspace method, that does not require an explicit construction of S(σ).
Specifically, each iteration of the iterative linear solver requires a Matrix-Vector (MV)
product with S(σ), which can be done partially in parallel as follows.

Conceptually, the global spectral Schur complement S(σ) in (2.7) is also dis-
tributed across the p processors, with each processor handling a different subdomain.
The MV product with S(σ) is computed as

(5.1) S(σ)x = (C − σI)x − ET (B − σI)−1Ex.

An important property from the DD method with edge-separation is that the second
term on the right-hand side of (5.1) is entirely local, as can be easily seen from the
structure of S(σ) in (2.7). In summary, the computations involved in (5.1) are:

1. MV multiplication with C − σI (non-local),
2. MV multiplication with E and ET (local),
3. system solution with B − σI (local),

where only the first computation requires communication, between adjacent subdo-
mains. Hence, the communication cost of the MV product with S(σ) is the same as
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that with C and is point-to-point. Note here that there is a trade-off between the
qualitative and computational performance of the algorithms described in this paper.
Using a larger value for p will typically bring the shape of the eigenbranches closer
to being linear, thus enhancing convergence of Algorithms 3.1 and 4.1, but, from
a computational point-of-view, might lead to less scalable MV products with S(σ),
since now more neighboring subdomains will have to exchange information and might
overshadow the gain by reducing the local computations per subdomain.

The other major communication cost when solving linear systems with S(σ) is
introduced by the vector dot-products used in the projection method of choice and
are of the all-reduction kind. The local solve with the block-diagonal (B − σI) is
carried out by using a sparse direct method and (B − σI) is factored once for each
shift σ.

6. Numerical experiments. This section reports on numerical results with the
proposed Newton schemes listed in Algorithms 3.1 and 4.1. All numerical experiments
were performed on the Itasca Linux cluster at Minnesota Supercomputing Institute.
Itasca is an HP Linux cluster with 1,091 HP ProLiant BL280c G6 blade servers, each
with two-socket, quad-core 2.8 GHz Intel Xeon X5560 “Nehalem EP” processors shar-
ing 24 GB of system memory, with a 40-gigabit QDR InfiniBand (IB) interconnect.
In all, Itasca consists of 8, 728 compute cores and 24 TB of main memory.

The numerical experiments are organized in three different sets. In the first set,
we assume that each eigenpair (µ(σ), y(σ)) in Algorithms 3.1 and 4.1 is computed with
the highest possible accuracy in order to study the algorithm theoretically. The second
set of experiments consists of results obtained in distributed computing environments
where we are interested in measuring actual wall-clock timings and (µ(σ), y(σ)) is only
approximately computed. The third set of experiments consists of a brief experimental
framework with matrices from electronic structure calculations.

To compute a single eigenpair we use Algorithm 3.1 and to compute a few con-
secutive eigenpairs, or all eigenpairs inside a given interval, we will use Algorithm
4.1.

6.1. Model problem. The test matrices in this section originate from dis-
cretizations of elliptic PDEs on two (and three) dimensional domains. More specifi-
cally, we are interested in solving the eigenvalue problem

(6.1) −∆u = λu

on a rectangular domain, with Dirichlet boundary conditions (∆ denotes the Laplacian
differential operator). Using second order centered finite differences with nx, ny and
nz discretization points in each corresponding dimension, we obtain a matrix A, the
discretized version of ∆, which is of size n = nxnynz.

6.2. Algorithm validation. This section focuses on the numerical behavior of
Algorithms 3.1 and 4.1 and so the results described here were produced by using a
MatLab prototype implementation. In addition, the Lanczos algorithm with partial
re-orthogonalization is used to compute (µ(σ), y(σ)).

Table 6.1 shows the numerical performance of Algorithm 4.1 for a few discretized
Laplacians of size n ≈ 4000, 8000, 16000 and n ≈ 32000, when computing all
eigenpairs inside a given interval [α, β]. The intervals were selected as [α, β] =
[0, 0.5], [2, 2.2] and [4, 4.1]. Note that the last two intervals lie well inside the spectrum.
For the purposes of this experiment we enforced a strict requirement for convergence
by setting tol=10−12. For each different discretization we also used a varying number
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Table 6.1
Number of Newton iterations when computing all eigenvalues inside the interval [α, β] by Al-

gorithm 4.1. Different matrix sizes and number of subdomains are used.

[α, β] := [0, 0.5] [α, β] := [2, 2.2] [α, β] := [4.1, 4.2]

#Eigvls It #Eigvls It #Eigvls It

n = 21× 20 × 9

# of subdomains (p)
2 41 85 124
4 14 26 41 74 55 80
8 32 60 70
16 32 55 70

n = 21× 20 × 19

# of subdomains (p)

2 60 152 360
4 35 43 82 130 127 172
8 35 116 152
16 39 96 148

n = 41× 20 × 19

# of subdomains (p)
2 210 342 424
4 72 170 154 292 209 314
8 154 273 310
16 138 241 300

n = 41× 40 × 20

# of subdomains (p)
2 385 703 802
4 160 354 319 540 472 647
8 296 502 592
16 270 451 533

of subdomains p. For each interval [α, β] we list the number of eigenvalues inside
the interval (denoted as “#Eigvls”) as well as the total number of Newton iterations
in Algorithm 4.1 to compute all eigenvalues (denoted as “It”). We observe that, on
average, a few Newton iterations per eigenvalue are enough to compute each eigenpair
close to machine precision. Moreover, when using larger values for p, we typically need
only one or two Newton steps per eigenpair. This was expected from our observations
in Section 3, since the shape of the eigenbranches of S(.) is better approximated by a
linear function when we use more subdomains and thus Newton’s method converges
faster. Note that when using a large number of subdomains, the initial guess for the
next unconverged eigenpair is usually much more accurate.

Figure 6.1 shows the convergence behavior of Algorithm 3.1 when searching for a
single eigenpair closest to ζ, for a Laplacian discretized as nx = 11, ny = 10, nz = 9.
In the pre-processing phase, we applied a few steps of inverse iteration with (A− ζI)
to generate initial guesses of varying accuracy for Algorithm 3.1. The dashed line
shows the convergence of inverse iteration on (A− ζI) while the circled curves shows
the convergence of Algorithm 3.1. Note that the leftmost circled curve stands for
Algorithm 3.1 with σ := ζ as the starting shift. As expected when the initial guess is
not very accurate, more iterations of Algorithm 3.1 may be needed for convergence.
As the initially provided approximation becomes more accurate, one or two iterations
of Algorithm 3.1 are usually enough to reduce the residual norm of the approximate
eigenpair below 1e-10.

6.3. Distributed computing environments. In this subsection we present
results obtained on distributed computing environments, using our parallel imple-
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Fig. 6.1. Convergence behavior for computing the eigenpair closest to ζ when combining inverse
iteration and Newton’s method. In the left subfigure ζ = 0.0 while in the right subfigure ζ = 3.0.

mentation of Algorithms 3.1 and 4.1. We focus on parallel execution timings and
report results both for extreme and interior eigenvalue problems.

6.3.1. Experimental setup. We implemented and tested three different meth-
ods: a) (inexact) residual inverse iteration applied to A (each time with the appropri-
ate shift), as discussed in [28], b) Newton’s method as described in Algorithms 3.1 and
4.1, and c) a combination of (inexact) inverse iteration with Algorithms 3.1 and 4.1
where we first perform a few steps of inverse iteration with A, followed by the New-
ton’s scheme. We chose to compare against residual inverse iteration mainly because
of its simplicity and the fact that it represents the most likely contender to our ap-
proach. As in the proposed Newton approach, residual inverse iteration approximates
an eigenpair “in-place”, e.g. without building a subspace.

All algorithms were implemented in C/C++ linked with the Intel Math Kernel
[1] and PETSc [3] libraries, compiled under the Intel MPI compiler using the -O3
optimization level. For Algorithms 3.1 and 4.1, the number of subdomains used will
always equal the number of cores used and each distinct subdomain is handled by
a single core (distributed-memory model only). The matrix (B − σI) was factored
by the LDL factorization, obtained by the associated routine in the CHOLMOD [8]
package. We did not consider any further high-performance computing optimizations.

For the inexact residual inverse iteration method applied to A, the inner tolerance
for each linear system solution was kept fixed. We tried different inner tolerances and
report the best results obtained. For Newton’s method, used either as a standalone
method as in Algorithms 3.1 and 4.1, or pre-processed by inverse iteration with A, each
update of σ was made after approximating (µ(σ), y(σ)) by solving a linear system with
S(σ), using a fixed tolerance of tol ls = 1e-2. For all (iterative) linear system solutions,
we used the MINimum RESisudal (MINRES) [29] method as the iterative solver (we
used the existing implementation in PETSc). By default we used no preconditioning
for the inner solution in any of the methods tested. The residual norm tolerance
for accepting an approximate eigenpair was set to tol = 1e-8, although the proposed
Newton method almost all the times returned an approximation with residual norm
less than 1e-10 or 1e-11. The residual norm was always evaluated directly by using
the formula ‖r‖ = ‖Ax̂(σ)− σx̂(σ)‖/‖x̂(σ)‖. All experiments were repeated multiple
times and the average execution time is reported.

6.3.2. Results. Table 6.2 shows the actual wall-clock timings when computing
k = 1 and k = 5 consecutive eigenpairs next to ζ ∈ R for a set of 2D model problems,
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Table 6.2
Computing k = 1 and k = 5 eigenvalues next to ζ for a set of 2D problems. For the case where

ζ 6= 0, the starting shift for each particular eigenpair computation in Newton’s scheme was provided
by first performing three steps of Inverse Iteration. Times are listed in seconds.

n = 601× 600

ζ = 0.0 ζ = 0.01 (269)

(p, k) s TNT It TRI TNT It TRI

(16,1) 7951 2.21 3 3.18 70.2 4 128.2
(16,5) - - 11.1 15 16.2 363.0 19 615.8
(32,1) 12377 0.89 3 1.63 18.3 3 78.2
(32,5) - - 5.41 14 9.01 85.2 14 402.5
(64,1) 18495 0.28 3 0.77 13.9 3 58.3
(64,5) - - 1.94 14 3.63 67.3 14 192.4

n = 801× 800

ζ = 0.0 ζ = 0.01 (488)

(p, k) s TNT It TRI TNT It TRI

(64,1) 24945 1.09 3 1.25 37.4 2 156.4
(64,5) - - 5.95 15 6.98 198.7 12 775.1
(128,1) 36611 0.27 2 0.67 24.0 2 75.4
(128,5) - - 1.31 9 3.82 125.0 11 382.1
(256,1) 52319 0.22 2 0.48 11.2 2 44.9
(256,5) - - 1.59 9 2.73 61.3 10 231.6

n = 1001× 1000

ζ = 0.0 ζ = 0.01 (764)

(p, k) s TNT It TRI TNT It TRI

(128,1) 46073 0.42 3 1.03 95.3 2 102.1
(128,5) - - 2.84 15 5.33 482.7 10 532.1
(256,1) 65780 0.27 2 0.64 54.2 2 73.4
(256,5) - - 1.35 10 3.32 281.3 9 381.4
(512,1) 93440 0.25 2 0.58 49.4 2 58.1
(512,5) - - 1.42 10 3.21 256.7 10 312.8

while Table 6.3 presents similar results for a set of 3D model problems. The values of ζ
were selected such that the eigenvalue problem was either extremal or slightly interior
for both problems. For the 2D problems we chose ζ = 0 and ζ = 0.01 while for the 3D
problems we set ζ = 0 and ζ = 0.1. The number in parentheses next to ζ (when ζ > 0)
denotes the number of negative eigenvalues of (A− ζI). As previously, p denotes the
number of subdomains, s denotes the size of the Schur complement matrix S(.), and
“It” denotes the total number of Newton steps performed by Algorithm 3.1 (when
k = 1) or Algorithm 4.1 (when k = 5). We denote the total time spent in Algorithm 3.1
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or Algorithm 4.1 by “TNT ” while the time spent in residual inverse iteration applied
to A is denoted as “TRI”. All timings are listed in seconds. Because (µ(σ), y(σ)) is
computed only approximately, extra care must be taken in order to avoid divergence
when ζ 6= 0. We always performed three steps of (inexact) inverse iteration with A in
order to “lock” the correct eigenpair(s) before we switch to Newton’s scheme. In any
case, the times reported are total running times and include all phases.

For 2D problems there is a significant advantage of the Newton-based method,
for both ζ = 0 and ζ = 0.01 values, as can be seen in Table 6.2. By using p = 256
subdomains, we can compute the lowest eigenpair of a n ≈ 106 2D Laplacian in 0.2
seconds, while the five lowest eigenpairs can be computed in about one second. The
severe difference in the runtimes when changing from ζ = 0.0 to ζ = 0.01 is due to the
fact that (A−0.01I) is now indefinite and has a large number of clustered eigenvalues
very close to zero. Results for 3D problems are different from those of the 2D case
and residual inverse iteration becomes more competitive, relative to the Newton-based
approach. The main reason is that now iterating with the spectral Schur complement
is more expensive because the number of interface nodes, s, is larger and also the
factorization of the (B − σI) matrix is more expensive. The Newton-based approach
becomes faster when we use enough subdomains.

As a general comment regarding the results, for both the 2D and 3D problems,
the overall cost typically scales linearly with the number of eigenpairs sought. This
is a natural consequence of the fact that our method is not a projection method and
each eigenpair of A is computed on its own. Also, note that increasing the number of
subdomains does not lead to a great reduction in the number of total Newton steps (as
was the case in Table 6.1) because now (µ(σ), y(σ)) is computed only approximately.

6.4. A comparison with ARPACK. This subsection provides a brief compar-
ison between the Newton scheme and ARPACK [24], a broadly used software package
based on an implicitly restarted Arnoldi/Lanczos process. By their different nature
the two methods are not easy to compare but our goal here is to give a rough idea
on how the two methods perform when a small number of eigenvalues are to be com-
puted. ARPACK is expected to be superior to the Newton when a large number of
eigenvalues is to be computed. For the Newton scheme we used only one node of
Itasca (8 cores). Thus, now each core actually handles multiple subdomains. Under
this framework we can also test the performance of the Newton scheme in “serial”
environments. For ARPACK, we set the size of the search subspace equal to twenty
and we used only one execution core. The tolerance tol for the requested eigenpairs
set again to tol = 1e − 8 for both methods. As a demonstration, we used a single
test 3D Laplacian with nx = 71, ny = 70, and nz = 69 discretization points in each
dimension. As previously, we selected ζ = 0 and ζ = 0.1.

Table 6.4 compares the execution times obtained of the Newton (TNT ) and
ARPACK (TARP ) schemes when searching for k = 1 and k = 5 eigenpairs of A,
and using a different number of subdomains. Because ARPACK operates directly
on A it is oblivious to the number of subdomains used. On the other hand, the
performance of the Newton scheme varies as the number of subdomains changes.

As expected, ARPACK becomes more efficient than the Newton-based method
as we increase the number of eigenpairs sought for the specific problem, especially for
eigenvalues deeper into the spectrum, since it is a projection method and can obtain
simultaneous approximations for multiple eigenpairs. On the other hand, the Newton
method approximates each eigenpair separately (the size of the subspace is always
one) and the total cost is approximately linear to the number of eigenpairs sought.
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Table 6.3
Computing k = 1 and k = 5 eigenvalues next to ζ for a set of 3D problems. For the case where

ζ 6= 0, the starting shift for each particular eigenpair computation in Newton’s scheme was provided
by first performing three steps of Inverse Iteration. Times are listed in seconds.

n = 41× 40× 39

ζ = 0.0 ζ = 0.1 (19)

(p, k) s TNT It TRI TNT It TRI

(16,1) 15423 0.21 3 0.10 1.07 4 1.32
(16,5) - - 1.39 15 0.62 5.85 19 7.77
(32,1) 20037 0.06 3 0.03 0.27 2 0.90
(32,5) - - 0.32 14 0.19 1.52 14 4.86
(64,1) 24789 0.09 3 0.04 0.14 3 0.66
(64,5) - - 0.44 14 0.21 1.01 15 3.51

n = 71× 70× 69

ζ = 0.0 ζ = 0.1 (137)

(p, k) s TNT It TRI TNT It TRI

(64,1) 83358 0.80 3 0.61 15.4 2 15.9
(64,5) - - 4.20 14 3.22 80.4 10 79.9
(128,1) 108508 0.19 3 0.32 3.12 2 8.41
(128,5) - - 1.25 14 1.71 15.1 10 38.5
(256,1) 136159 0.10 3 0.27 5.99 2 12.7
(256,5) - - 0.68 13 1.45 25.3 10 51.7

n = 101× 100× 99

ζ = 0.0 ζ = 0.1 (439)

(p, k) s TNT It TRI TNT It TRI

(128,1) 230849 2.73 3 2.02 48.1 3 93.3
(128,5) - - 13.2 15 10.3 233.2 16 472.1
(256,1) 293626 1.10 3 1.61 23.4 3 62.4
(256,5) - - 5.80 14 8.32 129.2 16 301.5
(512,1) 369663 0.62 2 0.99 32.4 2 75.3
(512,5) - - 3.01 12 5.71 168.9 12 322.9

Note however that when the size of the search subspace in ARPACK was set to less
than ten, ARPACK was slower than the proposed Newton-based schemes.

6.5. Matrices from electronic structure calculations. This subsection dis-
cusses a few experiments with matrices from the PARSEC matrix set available from
the University of Florida sparse matrix collection [10]. These matrices were originally
obtained from the PARSEC code for electronic structure calculations using a Density
Functional Theory (DFT) approach. The Hamiltonians are sparse and symmetric,
with multiple (and clustered) eigenvalues. Each Hamiltonian has a number of occu-
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Table 6.4
Computing k = 1 and k = 5 eigenvalues next to ζ with the proposed Newton scheme and

ARPACK. The discretization selected as nx = 71, ny = 70, and nz = 69. Times are listed in
seconds.

ζ = 0.0 ζ = 0.1 (137)

(p, k) TNT TARP TNT TARP

(64,1) 5.5 35.4 170.0 351.5
(128,1) 3.4 – 105.1 –
(256,1) 5.3 – 122.5 –
(64,5) 28.3 94.1 884.7 416.3
(128,5) 15.3 – 532.3 –
(256,5) 25.9 – 605.3 –

Table 6.5
Computing a single eigenpair closest to shifts ζ1, ζ2, and ζ3, for a set of Hamiltonian matrices

from the PARSEC matrix group. Time is listed in seconds.

Si10H16, n = 17077, nnz = 875923

ζ1 = 0.29 ζ2 = 0.51 ζ3 = 1.11
p TNT TRI TNT TRI TNT TRI

4 3.82 0.69 6.9 4.27 13.3 11.1
8 0.45 0.48 1.3 3.11 4.6 8.52

SiO, n = 33401, nnz = 1317655

ζ1 = 0.75 ζ2 = 1.02 ζ3 = 2.17
p TNT TRI TNT TRI TNT TRI

4 9.91 6.23 30.1 30.9 41.0 59.1
8 2.11 3.78 15.2 20.1 22.4 32.7

H2O, n = 67024, nnz = 2216736

ζ1 = 1.35 ζ2 = 1.88 ζ3 = 3.84
p TNT TRI TNT TRI TNT TRI

16 15.2 12.2 17.5 33.9 29.3 23.1
32 7.02 10.8 7.39 20.5 11.4 17.4

pied states, say n0, which is the number of smallest eigenvalues requested. While
extensions are possible, as it is described the proposed scheme cannot compute mul-
tiple eigenvalues. In this set of experiments, we restrict our attention in computing a
single eigenpair of each Hamiltonian matrix.

The results are shown in Table 6.5. We kept the same notation as in the previous
subsection. Next to each matrix we also list its size n, as well as nnz the total number
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of non-zero entries. Unlike the model problem, the number of non-zero entries per row
for the Hamiltonians is fairly large (57.3, 39.4 and 33.07 non-zeros/row from smallest
to largest matrices), and after partitioning the number of interface nodes s tends to
be quite large (especially for higher order finite difference schemes). These PARSEC
matrices are three-dimensional discretizations of Hamiltonian matrices in real-space.
To begin with, the number of nonzero entries in the original matrix is quite large, a
consequence of the high-order discretization and the addition of a (dense) ‘non-local’
term. Together with the 3D nature of the problem this leads to an unusually large
number of interface points – even if a good partitioning is employed. As a result the
Schur complement matrix tends to be larger, which leads to a harder problem for the
Newton scheme. For each test matrix we used three different shifts ζ1, ζ2, ζ3, deter-
mined so that the shifted matrix had 40, 70, and 200 negative eigenvalues respectively.
Similarly with the results obtained in the previous subsection, raising the number of
subdomains typically leads to faster convergence for the Newton scheme. The Newton
scheme is generally faster than residual inverse iteration, however both methods start
to deteriorate as we move deeper into the spectrum. We should also note that, as was
observed in our experiments, both methods can capture five or six digits of accuracy
in a relatively short amount of time, but after this point convergence experiences a
plateau until the requested tolerance tol = 1e− 8 is finally met.

7. Conclusion. The method presented in this paper for solving symmetric eigen-
value problems, combines Newton’s method with spectral Schur complements in a
Domain Decomposition framework. The scheme essentially amounts to solving the
eigenvalue problem along the interface points only, and exploits the fact that solves
with the local subdomains are relatively inexpensive. A parallel implementation was
presented and its performance evaluated for model Laplacian problems and general
matrices from electronic structure calculations. The proposed method can be quite
fast when only one or a very small number of extremal eigenpairs are sought. It can
be combined with a few steps of inverse iteration to provide again a fast technique
for solving what might be termed moderately interior eigenproblems, i.e., problems
with eigenvalues not too deep inside the spectrum. One might compare the proposed
approach to a Rayleigh quotient iteration, whereby the consecutive linear systems are
handled by an iterative method in a domain decomposition framework. However, the
focus on the Schur complement provides additional insights and leads to the Newton
procedure presented here.

A key issue still requiring further investigation is to find effective ways to ap-
proximate the eigenpairs (µ(σ), y(σ)) of the Schur complement. We used inverse
iteration implemented with the MINRES iterative method but did not consider any
specific preconditioners. Preconditioning will become mandatory when solving inte-
rior eigenvalue problems where the desired eigenvalues are deep inside the spectrum,
e.g., toward its middle. Such problems can be extremely difficult to solve if sparse
direct solvers are ruled out, as is the case for very large 3D problems. Eigenvectors
of previous spectral Schur complements can again be used to accelerate the iterative
solver as the shift changes. Because these ideas require a separate and rather involved
study we opted to leave them for future work.

8. Acknowledgments. We would like to thank the anonymous referees and the
editor for their valuable suggestions and insightful comments which greatly improved
the paper. We are grateful to the University of Minnesota Supercomputing Institute
for providing us with computational resources and assistance with the computations.
We also thank Andreas Stathopoulos for fruitful discussions.

25



REFERENCES

[1] Intel(r) fortran compiler xe 14.0 for linux.
[2] J. L. Aurentz, V. Kalantzis, and Y. Saad, A GPU implementation of the filtered Lanczos

procedure, Tech. Rep. ys-2015-4, 2015.
[3] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley,

L. C. McInnes, B. Smith, and H. Zhang, Petsc users manual revision 3.2.
[4] C. Bekas and Y. Saad, Computation of smallest eigenvalues using spectral schur complements,

SIAM J. Sci. Comput., 27 (2006), pp. 458–481.
[5] J. K. Bennighof and R. B. Lehoucq, An automated multilevel substructuring method for

eigenspace computation in linear elastodynamics, SIAM J. Sci. Comput., 25 (2004),
pp. 2084–2106.

[6] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine, The Zoltan and Isor-
ropia parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and
coloring, Scientific Programming, 20 (2012), pp. 129–150.
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