
Accelerating data uncertainty quantification
by solving linear systems with multiple

right-hand sides

Vassilis Kalantzis, Costas Bekas, Alessandro Curioni, and
Efstratios Gallopoulos

January 2013

EPrint ID: 2013.1

Department of Computer Science and Engineering
University of Minnesota

Preprints available from: http://www-users.cs.umn.edu/kalantzi

ACCELERATING DATA UNCERTAINTY QUANTIFICATION BY
SOLVING LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND

SIDES

V. KALANTZIS∗, C. BEKAS† , A. CURIONI‡ , AND E. GALLOPOULOS‡

Abstract. The subject of this work is accelerating data uncertainty quantification. In particular,
we are interested in expediting the stochastic estimation of the diagonal of the inverse covariance
(precision) matrix that holds a wealth of information concerning the quality of data collections,
especially when the matrices are symmetric positive definite and dense. Schemes built on direct
methods incur a prohibitive cubic cost. Recently proposed iterative methods can remedy this but
the overall cost is raised again as the convergence of stochastic estimators can be slow. The motivation
behind our approach stems from the fact that the computational bottleneck in stochastic estimation
is the application of the precision matrix on a set of appropriately selected vectors. The proposed
method combines block conjugate gradient with a block-seed approach for multiple right-hand sides,
taking advantage of the nature of the right-hand sides and the fact that the diagonal is not sought to
high accuracy. Our method is applicable if the matrix is only known implicitly and also produces a
matrix-free diagonal preconditioner that can be applied to further accelerate the method. Numerical
experiments confirm that the approach is promising and helps contain the overall cost of diagonal
estimation as the number of samples grows.

1. Introduction. It is a common realization that the 21st century marks a new
era in science, engineering, business as well as everyday life: the era of data. It is also
understood that before we can get any useful knowledge out of the “tsunami of data”,
we need to understand its quality and the degree that it can be trusted. Therefore,
there is a need for techniques that measure the uncertainty in data collections. Much
information can be derived from the elements of the inverse of the sample covariance
matrix for the data collection, especially those lying on the diagonal. We build upon
previous work and show that the combination of stochastic estimation and new solvers
for linear systems with multiple right-hand sides (mrhs) can drastically reduce the
prohibitive cubic cost (with respect to the size of the data collection) of conventional
methods for diagonal estimation for the general case where the underlying matrix is
dense, symmetric positive definite (spd) without any additional structure. We note
from the start that in this paper we do not address the important problem of data
assimilation.

Adopting the basic premise of the vector space model in data analysis, in which
complex, multivariate data are represented as long tuples of numbers, let Dn×q be
the data matrix where columns correspond to samples and rows to features modeled
as random variables following certain distributions. The sample covariance matrix is

A =
1

q
DD⊤(1.1)

and collectively holds relations between features. The matrix is spd possibly after
preprocessing (see e.g. [13, 24]). In this context, element (i, j) of the inverse A−1,
also known as the precision matrix, can be interpreted as the partial variance of
feature i with respect to feature j. Thus, its diagonal essentially holds the degree of
confidence one can have in the data collection [21, 28, 35, 37]. If only few elements
of the diagonal or if only the trace of the precision matrix are sought, an efficient

∗Computer Eng. & Informatics Dept., University of Patras, Greece. {kalantzis@ceid.upatras.gr}
†IBM Research - Zurich, Switzerland. {bek@zurich.ibm.com,curioni@zurich.ibm.com}
‡Computer Eng. & Informatics Dept., University of Patras, Greece. {stratis@ceid.upatras.gr}

1

approach is to use methods in the spirit of the work started by Bai, Fahey and Golub
[5] and then in [6, 26] and more recently by Brezinski et al. [12] that utilize the
natural correspondence between the Lanczos algorithm and Gaussian quadrature via
matrix moments. See also the seminal work of Golub and Meurant [18] for extensive
discussions on these methods. Such methods can lead to estimates for the trace
using Monte Carlo techniques and provide bounds for individual diagonal elements at
quadratic cost for dense matrices.

In this paper, instead, we are concerned with estimating the entire diagonal of
the precision matrix. Calculating it by means of standard numerical linear algebra
techniques can be accomplished by first computing the Cholesky factorization A =
R⊤R, then solving and retrieving the diagonal elements (R⊤R)yi = ei, di = e⊤i yi for
i = 1, . . . , n, where ei is the i-th column of the identity matrix. Covariance matrices
are in general dense, so the overall cost of this procedure as well as the aforementioned
quadrature-based methods scale as O(n3). As n can range from thousands to several
millions, it is crucial to develop algorithms that demonstrate high performance and
run efficiently on the types of computational platforms available to analysts, ranging
from new commodity-level multicore systems for small scale problems to massively
parallel supercomputers and beyond for large collections.

In previous work ([7, 8]) some of the present authors adopted a diagonal stochastic
estimator introduced in [9] and showed that it is feasible to reduce the cost of esti-
mating the diagonal of the inverse for dense matrices from cubic to quadratic levels
by combining stochastic estimation and an efficient linear solver based on conjugate
gradient (cg) with iterative refinement. The solver is also applicable when the matrix
is implicitly known via matrix-vector multiplications (hereafter referred to as MVs).
Consider a matrix function P(A) and a procedure P (A, z) that implements (or ap-
proximates) P (A, z) ≈ P(A)z. Then, the following formula is an estimator for the
diagonal of the matrix function P(A):

Ds(P(A)) := [

s∑

k=1

(z(k) ⊙ P (A, z(k)))]⊘ [

s∑

k=1

z(k) ⊙ z(k)],(1.2)

for carefully selected vectors z(k). The symbols ⊙,⊘ denote Hadamard (element-wise)
multiplication and division respectively (see [9]). In the present case, the aforemen-
tioned function is the matrix inverse, P(A) = A−1, and thus P (A, z) can be any
method that approximates A−1z. Hence, for a limited number, say s, of sampling op-
erations combined with a low (quadratic) cost solver P (A, z), the overall cost becomes
O(sn2). It is well known, however, that stochastic estimation converges slowly when
the estimated quantity exhibits much variance and the number of samples, s, may
need to be very large (see e.g. [4]). Once this becomes a significant fraction of n, the
overall cost is elevated again to cubic levels. We demonstrate here that it is possible
to perform the full number of required sampling steps (s) but only pay a fraction of
the corresponding cost. The simple but crucial observation which motivates our pro-
posal is that the diagonal estimator (1.2) requires the solution of a linear system with
multiple (s) right-hand sides. Therefore, to this effect we develop a special matrix-free
linear solver for systems with spd matrices and mrhs.

We note in passing that other approaches to reduce cost can be envisioned, such as
taking advantage of (sparse) structure, specially designed vectors z(k); cf. [9, 25, 36].
However, in this work we are interested in covariance matrices that do not exhibit a
matrix structure appropriate for these approaches.

2

2. The case for multiple right-hand sides in stochastic estimation .
Formula (1.2) for the estimator suggests that if one assumes that the cost of apply-
ing P (A, z(k)) is independent of the vector z(k), the complexity of the computation
depends linearly on the number of samples, e.g. it is s times the cost of applying
P (A, z(k)). Indeed, a natural first step in attempting to accelerate the estimator is
to implement the fastest method possible to compute P (A, z(k)); see e.g. [7, 8]. On
the other hand, the linear dependence on s is not quite true. To see this, first note
that for the diagonal of the inverse, formula (1.2) requires the evaluation of all vec-
tors {A−1z(k)}k=1:s. If direct methods were applicable, then the cost of solving for s
right-hand sides would require only one, rather than s Cholesky factorizations, thus
the dominant cubic cost does not scale linearly with s. Direct methods are not ap-
plicable, however, first because we target very large problems and second because we
would like the method to be applicable if the matrix is only available implicitly, via
MVs. We thus explore what means are available in the context of matrix-free iterative
methods to speed-up the stochastic diagonal estimator. We consider projection-type
iterative methods that promise to solve AX = Z for X ∈ Rn×s at an average cost that
is smaller than the average cost of solving each of the s linear systems independently.
Two important issues are how many and what right-hand sides to use. We already
mentioned earlier that s can be large. Regarding the second issue, based on the fact
that no special structure is assumed for A and its inverse, the columns z(k) of Z are
selected to be Rademacher vectors, that is random vectors with independent entries
that take the values ±1 with equal probability. Our choices regarding these issues are
consistent with previous studies in stochastic estimation; cf. [4, 7, 22].

The main question, therefore, is how to design an efficient iterative method under
these conditions. Seed methods inspired by early work in computational electromag-
netics [33] as well as earlier ideas of Lanczos (cf. [32]), Parlett [30] and Saad [31],
and block methods, such as block cg (bcg) introduced by O’Leary [27] are promising
candidates. Many methods are available and analyzed in the literature for symmetric
and nonsymmetric systems, see e.g. [11, 16, 20, 29, 34] for some recent contributions.
Some of these methods, e.g. [29], are designed to handle sequences of nonsymmetric
systems and mrhs. A notable characteristic of the present application is that the
right-hand sides are readily available on demand, the matrix is spd and does not
change, therefore some of the techniques developed in these papers are not necessary.

Recall that in seed methods, one or more right-hand sides are selected first and
the corresponding system(s) (called “seed system(s)” or “seed” for short) are solved
using a (possibly block) Krylov method. In the course of the solution of the seed, the
remaining systems are projected and approximated on the generated Krylov subspace.
After a sufficient number of iterations for the seed system(s), the effective condition
number of the matrix for the remaining systems is smaller; cf. [31]. It is thus sug-
gested to select another seed and repeat the same process until all systems have been
adequately approximated. This “multi-seeding” approach was used in [33], pursued
for nonsymmetric systems in [32], and then studied in detail for the spd case in [14].
Comparing the performance of methods analyzed in [14, p. 1718], it was observed
that “the single seed method depends heavily on the closeness of the right-hand sides
while the block method depends less” e.g. if the right-hand sides are statistically
independent or orthogonal. This finding supports the use of the block rather than the
single seed approach when estimating the diagonal of the inverse with formula (1.2)
with Rademacher vectors as right-hand sides as is the case here. Our starting point,
therefore, is a hybrid form of the seed and block approaches for spd matrices, which

3

we call “block-seed cg”, first proposed by Chan and Wan ([14]) and extended later
by Kilmer et al. to nonsymmetric systems [23]. Further extending the seed approach,
several methods in the literature use information obtained in the early seeds to deflate
spectral information in order to improve the effective condition of subsequent systems;
see the work of Giraud et al. [17] for a systematic evaluation of several methods based
on this approach as well as [1, 10, 19, 34].

The idea of deploying iterative methods that take advantage of the mrhs has also
been used by Anitescu et al. in the context of data analysis [3]. They proposed using
bcg for a maximum likelihood estimation problem that required the trace of a matrix
function depending on the inverse of a covariance matrix; Chen in [15] further refined
the method by combining it with deflation. The literature, however, is still sparse
in iterative methods for estimating the diagonal of the inverse; to the best of our
knowledge this is the first time iterative mrhs solvers are used to this effect.

3. A block-seed cg approach. In studies targeting the simple (non-block)
seed approach Abdoul-Rehim et al. noted that it is more effective to seed only once
and then apply an iterative method individually on each of the remaining systems
using as starting vector the approximation obtained from the first step; e.g. see [2].
We cast the choices of [2] in the context of the proposed block-seed approach. Specif-
ically, we construct a Krylov subspace that is larger and as such enables improved
approximation of more eigenvectors corresponding to a wider range of extremal eigen-
values. To achieve this, we choose a relatively small tolerance for stopping criterion.
This prevents the method from stopping because of an early convergence of the linear
systems before these eigenvectors have been approximated.

Thus, the first step is to use block-seed cg but to seed only once, so that at the
end of the seed phase a larger and richer (block) Krylov subspace is created that also
approximates well the solutions of a block of seed systems. We call this algorithm
init-bcg and list it as Algorithm 1. init-bcg will serve as the main module of the
method presented in this paper. Note that it coincides with the special case k = 0 of
the block-seed method in [14, p. 1712] and is a block generalization of methods found
in [17]. Following init-bcg, one could apply bcg to solve the remaining systems. A
more effective approach is proposed in Section 3.1.

init-bcg will not breakdown as long as blocks Pi, R
(1)
i retain full rank. Each

factor ζi in the iteration is the inverse of the upper-triangular factor of the thin QR

decomposition of R
(1)
i + Pi−1β and is also used to detect loss of rank. Inversion

of small (order-p) blocks is done explicitly using the singular value decomposition.
These inversions and multiplications between blocks to compute the terms α and β
are performed using efficient codes for dense linear algebra. Recall that the stability
of block methods is delicate because of the possible linear dependence among residual
vectors for different right-hand sides (cf. [27] as well as [20] and references therein).
Linear dependence could also be due to variability in the convergence of systems
within a block. On the other hand, our experience here as well as reports from [15]
suggest that when solving systems with Rademacher vectors as right-hand sides, bcg
is less prone to loss of rank. It can be shown that the following relation holds:

R
(j)
m+1 =

m∏

i=0

(I −APi(P
⊤
i APi)

−1P⊤
i)R

(j)
0 .(3.1)

Matrix I−APi(P
⊤
i APi)

−1P⊤
i is a projector that removes from R

(j)
0 components along

4

Algorithm 1 The init-bcg algorithm for AX = Z where Z ∈ Rn×s.

input : A,Z = [z(1), . . . , z(s)], X0, tol, ν

output : [X
(1)
m+1, X

(2)
m+1, . . . , X

(ν)
m+1] {for convenience assume that s = pν}

R0 = Z −AX0, partition R0 := [R
(1)
0 , . . . , R

(ν)
0], where R

(j)
0 is n× p and s = pν

compute P0 = R
(1)
0 ζ0 and R

(1)⊤
0 R

(1)
0 and set i = 0

repeat
{bcg phase}
α = (P⊤

i APi)
−1ζ⊤i (R

(1)⊤
i R

(1)
i)

X
(1)
i+1 = X

(1)
i+1 + Piα

R
(1)
i+1 = R

(1)
i −APiα

β = ζ−1
i (R

(1)⊤
i R

(1)
i)−1(R

(1)⊤
i+1 R

(1)
i+1)

Pi+1 = (R
(1)
i+1 + Piβ)ζi+1

for j = 2, . . . , ν do {projection phase}
η
(j)
i = (P⊤

i APi)
−1(P⊤

i R
(j)
i)

X
(j)
i+1 = X

(j)
i + Piη

(j)
i

R
(j)
i+1 = R

(j)
i −APiη

(j)
i

end for
i = i+ 1

until ‖R(1)
i+1‖F ≤ tol

the column space of Pi. In the sequel we also make use of the orthogonal projector

Πi = I − PiP
⊤
i .(3.2)

Denoting by

bspan{R0, AR0, . . . , A
m−1R0} := {

m−1∑

i=0

AiR0γi; γi ∈ Rp×p}

the block span of the elements defining the block Krylov subspace, in exact arithmetic
it holds that

bspan{P0, . . . , Pm−1} = bspan{R0, AR0, . . . , A
m−1R0}.(3.3)

3.1. The mod-init-bcg approach . Algorithm init-bcg applies block seeding
once, possibly for more iterations than the minimum needed for obtaining the desired
accuracy from the solution of the current block. We next propose an additional
iteration layer with init-bcg, motivated by our evaluation of the effects of finite
precision in the seeding that leads to a more effective algorithm for the problem under
study. Specifically, assume that the seed block has already performed m iterations
and that relation (3.1) holds. If one were to continue past iteration m it would hold
that

R
(j)
m+1 ∈ R(j)

m +A〈Pm〉, R
(j)
m+1⊥〈Pm〉,

where 〈Pm〉 denotes the column space of Pm. In exact arithmetic, blocks P0, . . . , Pm

are mutually A-orthogonal, hence block R
(j)
m+1 is orthogonal to bspan{P0, . . . , Pm−1}
5

(cf. Eq. (3.3)). Thus, R
(j)
m+1 is nearly orthogonal to any eigenvector that is well

approximated in 〈P0, . . . , Pm〉. In finite precision, however, assuming that the block-
seed is in iteration m, Pm is not exactly A-orthogonal to P0, . . . , Pm−1. Because of
the loss of A-orthogonality, previously deflated components from more distant blocks
P0, P1, . . .might become active again in non-seed residual blocks and components from
eigenvectors associated with extremal eigenvalues could reappear as a consequence of
the fact that extremal eigenvectors are the first to be approximated.

One remedy is reorthogonalization but this requires additional storage to hold a
basis for the Krylov subspace and O(nm2p2) computational cost that is prohibitive
if m, p are large. Instead, we choose to deflate again, from non-seed residuals, direc-
tion blocks P0, . . . , Pm in order to suppress components that re-emerge as described
above. It appears that this would require preserving the blocks P0, AP0, . . . in mem-
ory in order to repeat the Galerkin projection as in init-bcg. These blocks are not
needed during init-bcg and therefore could be stored in secondary storage. Either
way there would be an overhead, either on memory or due to slow reads/writes nec-
essary to access secondary storage. We propose to trade these undesirable storage
related penalties for extra MVs. Specifically, we call init-bcg again in order to gen-
erate and then deflate again these direction blocks from the non-seeds. We name the
method mod-init-bcg and list it, together with the follow-up steps needed in order
to accomplish the statistical estimation of the diagonal of the inverse, as Algorithm
2.

Algorithm 2 Estimating diag(A−1) with mod-init-bcg.

input: A,Z = [z(1), . . . , z(s)], ν, tol1, tol2, tol
output: Ds(A

−1)
{mod-init-bcg phase}
partition Z = [Z(1), . . . , Z(ν)] {for convenience assume that s = pν}
[X(1), X̂

(2)
0 . . . , X̂

(ν)
0] = init-bcg(A,Z, 0n×s, tol1, ν)

X̂0 = [0n×p, X̂
(2)
0 . . . , X̂

(ν)
0]

[X̃(1), X
(2)
0 . . . , X

(ν)
0] = init-bcg(A,Z, X̂0, tol2, ν)

{use bcg to solve remaining systems}
for k = 2, . . . , ν do

[X̃(k)] = bcg(A,Z(k), X
(k)
0 , tol)

end for
{stochastic estimation phase}
t =

∑s
j=1 x̃

(j) ⊙ z(j) {Vectors x̃(j) are columns of [X̃(1), X̃(2), . . . , X̃(ν)]}
q =

∑s
j=1 z

(j) ⊙ z(j)

Ds(A
−1) = t⊘ q

Note also that even though in the loop of Algorithm 2 that calls bcg to solve
for the remaining right-hand sides a specific partitioning appears (ν − 1 groups of
p right-hand sides each), one is free to organize the solution of the right-hand sides
differently: for example, to call bcg only once with block size s− p.

3.2. Practical considerations. The backbone of Algorithm 2 is init-bcg that
consists of a bcg phase and a projection phase. In Algorithm 2, init-bcg is called
twice to construct mod-init-bcg followed by the stochastic estimation phase. So,
we first consider the cost of init-bcg, ignoring terms not involving n. The memory

6

required in each iteration are 4p vectors when solving the block of seed systems and
2(s−p) in the projection phase, for a total of 2(s+p) n-vectors. Clearly, the memory
requirements of mod-init-bcg are the same. It is worth noting that in case n, s, p are
very large, we could partition the right-hand sides and apply init-bcg and mod-init-
bcg repeatedly, a subset at a time. The computational cost per iteration of init-bcg
is p MVs with matrix A, p2 + p dot products (DOTs) and 3 rank-p updates for the
bcg step and another (s − p)p DOTs and 2(s − p) rank-p updates. In these counts,
DOTs and updates are operations on vectors or blocks whose leading dimension is n.
To these, we must add the cost of thin-QR, that is approximately 2np2 operations
per iteration. The dominant cost of the stochastic estimation phase is 4s operations
on n-vectors.

Regarding the tolerances used in mod-init-bcg, tol is the accuracy sought for
the solution vectors passed to the stochastic estimator. Tolerance tol1 is chosen to
be small so that the first call to init-bcg generates a large Krylov subspace. This
implies more iterations when seeding and possibly re-emergence of eigenvectors as
noted earlier. Tolerance tol2 is larger than tol1 and is selected to deflate again such
components. Therefore the values of these tolerances are related. We suggest to
store a few direction blocks Pi with subscripts at some distance apart and once the

block-seed system is solved, e.g. after m iterations, to compute the ratio
‖ΠiR

(j)
m+1‖

‖R(j)
m+1‖

for these blocks. Subsequently, to choose tol2 so as to ensure that the second call to
init-bcg will deflate again all non-seed residuals whose aforementioned ratio is above
some chosen tolerance. Note that in the stochastic estimation phase we could use
X(1) instead of X̃(1) as a solution of the block-seed since the former is computed with
smaller tolerance. Also, there is the possibility that some extremal eigenvalues are
well separated and their eigenvectors rapidly approximated, in which case mod-init-
bcg will not be as effective at removing them from the non-seed residuals. In that
case, it might be helpful to first explicitly approximate and deflate these eigenvectors,
e.g. by preprocessing using a Lanczos-based algorithm, so that the subsequent call to
mod-init-bcg will work on the orthogonal complement of these eigenvectors.

We next compare our approach with related methods that use approximate in-
variant subspaces [1, 34]. These algorithms first solve for one or more right-hand
sides, generating approximate eigenvectors in the process. If only one right-hand
side is used to approximate the invariant subspace, as in [1], it might be necessary
to perform many iterations so as to capture a sufficient number of eigenvectors. If,
as in [34], many right-hand sides are used to generate approximate eigenvectors, the
memory needs also increase. In contrast, our approach takes advantage of the fact
that all right-hand sides are readily available (an assumption not made in the afore-
mentioned works) and obtains the initial guesses by solving for a block-seed. Since
we are not interested in eigenvectors and deflation takes place only implicitly, our
method is able to reach its aims with only limited demands on memory. Fig. 3.1
illustrates some of the aforementioned issues when solving AX = B with matrix A
of order n = 10000 constructed (using an orthogonal similarity tranformation built
from a random matrix) to have condition number equal to n. The right-hand side
B consisted of s = 2 Rademacher vectors the first one of which was selected as seed.
Observe that after 900 iterations, the first 300 direction vectors are no longer deflated
well. The plot confirms that the removal of direction vectors produced in later stages
of the algorithm is more effective because of less round-off.

7

0 50 100 150 200 250 300
10

−20

10
−15

10
−10

10
−5

10
0

Fig. 3.1: Solving AX = B for an spd matrix of size n = 10000 constructed to

have spectral condition number equal to n and s = 2. Plots of :‖ΠiR
(2)
301‖/‖R

(2)
301‖

(“◦”) and ‖ΠiR
(2)
901‖/‖R

(2)
901‖ (“�”) for i = 1 : 10 : 300; ‖ΠiR

(2)
901‖/‖R

(2)
901‖ (“+”) for

i = 301 : 10 : 600; ‖ΠiR
(2)
901‖/‖R

(2)
901‖ (“△”) for i = 601 : 10 : 900. Πi is as defined in

Eq. (3.2). Here each R(j) consists of only one column.

3.3. Matrix-free Jacobi preconditioning . For dense matrices without any
specific structure, preconditioning is more of an art. If the diagonal of the underlying
matrix was available, then one could try simple Jacobi preconditioning. On the other
hand, if methods for stochastic estimation of the diagonal of the inverse, like Algorithm
2, or the diagonal of the matrix, as in [9], are successful, it becomes of interest
to use them to generate (matrix-free) diagonal preconditioners. To the best of our
knowledge, this idea has not been considered elsewhere. From these two possibilities,
we sketch and test the effect of using the estimate for the diagonal of the inverse as
preconditioner. One version, that can be termed “static”, is to obtain an estimate for
the diagonal of the inverse after solving p systems (the seed block) and then apply
it as preconditioner for the remaining s− p systems. One could also envision a fully
dynamic preconditioner, which is updated after every (block) solve to incorporate
the latest diagonal estimate. In the next section we show results with the static
preconditioner.

4. Numerical experiments . We present numerical experiments that illustrate
our findings. Since our main focus is in data uncertainty quantification, we experiment
primarily with parameterized (model) covariance matrices. For completeness, we
also include some experiments that indicate the applicability of our techniques for
general (sparse) matrices. For economy of presentation, we enclose in parentheses
after the name of the method the selected tolerances, e.g. init-bcg(tol) and mod-
init-bcg(tol1, tol2). In all cases, n, s, p denote the order of the matrix, the number
of right-hand sides, and the block size used. Throughout our experiments, the right-
hand sides used were Rademacher vectors and the tolerance tol was set equal to
10−5 for all methods. The mean squared relative error and absolute mean relative
error for an estimation, say Ds(A

−1) of the diagonal of the inverse are the values
1
N

∑N
i ((di − d̂i)/di)

2 and 1
N

∑N
i |(di − d̂i)/di| respectively, where di = [A−1]i,i and

d̂i = [Ds(A
−1)]i. We first report on experiments written in MATLAB (64-bit version

7.10 R2010a) that ran on a machine with two 4-core Intel Xeon E5330 processors set

8

0 10 20 30 40 50 60
10

−15

10
−10

10
−5

10
0

(a)

0 5 10 15 20 25 30 35 40 45 50
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

(b)

Fig. 4.1: Contributions to residual of extreme eigenvectors using model covariance
matrices. Curves marked with “◦” and “∗” are for init-bcg with tolerances tol1 and
tol2 respectively and the curve marked with “�” is for mod-init-bcg(tol1, tol2). a)
Eigenvector contributions corresponding to the smallest 30 (indexed from 1 to 30 in
the x-axis) and 30 largest (indexed from 31 to 60) eigenvalues; n = 5000, θ = 1, κ = 1,
p = 4, tol1 = 10−10, tol2 = 10−5 b) Contributions corresponding to the 50 smallest
eigenvalues; n = 10000, θ = 3/4, κ = 2, p = 10, tol1 = 10−10, tol2 = 10−6.

at 1.6 GHz. The model covariance matrices are defined to have the general form (see
e.g. [8]):

[A]i,i = 1 + iθ, [A]i,j =
1

|i− j|κ (when i 6= j), for i, j = 1, ..., n,(4.1)

where θ, κ are real parameters, with κ ≥ 1. Such matrices exhibit a decaying be-
havior away from the main diagonal modeling the fact that some features are far less
correlated than others (cf. [36] and references therein). Decay is controlled by the
exponent κ while θ controls the diagonal, with higher values increasing the condition
number. Please note that since we assume that the matrix is only implicitly known,
we cannot take advantage of the special structure of these matrices.

We first examine the effectiveness of init-bcg and mod-init-bcg in suppressing
eigenvectors using two test matrices. The plots in Fig. 4.1 depict for each matrix the
contribution of selected eigenvectors to a non-seed residual. We observe that mod-
init-bcg is more effective at removing eigenvectors from non-seed residuals because
direction blocks that are reproduced by the repeated call to init-bcg are better
deflated (even compared to applying init-bcg only for tol2).

Fig. 4.2 compares methods bcg, the hybrid block-seed method of [14] (abbrevi-
ated as bsm), init-bcg and mod-init-bcg for two model covariance matrices. We
set s = 300 and vary the matrix size. We see that mod-init-bcg takes significantly
fewer MVs per right-hand side than all other methods. Note also that even though
bsm requires a smaller number of MVs per right-hand side than init-bcg, its actual
runtime is greater.

Table 4.1 shows results with mod-init-bcg as s increases. We tabulate the mean
squared relative error achieved with the stochastic estimator as well as the relative
error for the trace of the inverse. Regarding the latter, we remind the reader that

9

0.5 1 1.5 2 2.5 3

x 10
4

50

100

150

200

250

300

350

Matrix size

M
V

s
pe

r
rh

s

(a) p = 10, θ = 1, κ = 1

0.5 1 1.5 2 2.5 3

x 10
4

20

40

60

80

100

120

140

Matrix size

M
V

s
pe

r
rh

s

(b) p = 10, θ = 3/4, κ = 2

Fig. 4.2: Comparative performance of methods described in this paper for n = 5000 :
5000 : 30000 and s = 300. bcg is depicted with “◦”, init-bcg with “△”, bsm with
“∗” and mod-init-bcg with “�”.

Table 4.1: Performance results using a model covariance matrix of order n = 4000
using κ = 2, θ = 1/2 and p = s/10. (Col. 2): Mean relative error of estimator with
mod-init-bcg(10−10, 10−4). (Col. 3): Relative error for trace(A−1). (Col. 4): Ratio
of MVs using cg s times over using mod-init-bcg(10−10, 10−4).

s mre rel. error for trace MV speedup
20 1.10 · 10−4 0.0072 1.56
30 1.01 · 10−4 0.0059 1.73
40 9.90 · 10−5 0.0051 1.90
50 9.86 · 10−5 0.0046 2.11
60 9.81 · 10−5 0.0042 2.31

mod-init-bcg is not currently optimized for the trace for which other methods might
be more preferable. We use mod-init-bcg(10−10, 10−4) with p = s/10 for a model
covariance matrix of order n = 4000 with κ = 2, θ = 1/2. The last column shows
the ratio of the total number of MVs for cg over the total number of MVs using the
proposed method. The ratios reveal the sublinear increase of the MVs relative to the
independent runs of cg which in turn permits using more sample vectors to achieve
a better statistical estimation for the error.

Table 4.2 shows the ratio of MVs required by cg compared to mod-init-bcg for
s = 100, 200, 300 using model covariance matrices of size n = 10000, 20000, 30000
for fixed κ = 2 and varying θ = 3/4, 1, 5/4. We see that mod-init-bcg significantly
reduces the average MV count as s increases. Moreover, the overhead incurred by
larger blocksizes because of the two phases of mod-init-bcg is amortized.

We next consider the quality of results obtained with Algorithm 2 as the condi-
tion number of the model covariance matrices grows for various degrees of decaying
behavior away from the diagonal. The plots in Fig. 4.3 illustrate the mean squared
relative error obtained for matrices of sizes n = 2000, 10000, s = 300 sampling vectors
and parameter values in the range (κ, θ) ∈ [1 : 4] × [0.5 : 0.25 : 1.5]. For example,

10

Table 4.2: Ratio of MVs of cg over mod-init-bcg for s = 100, s = 200 and s = 300,
and various values of n and p for mod-init-bcg. The model covariance matrices were
constructed with κ = 2 and θ = 3/4, 1, 5/4.

θ = 3/4 θ = 1 θ = 5/4

s 100 200 300 100 200 300 100 200 300

n = 10000
p=5 2.53 2.93 3.01 3.62 4.00 4.16 5.45 6.00 6.35
p=10 2.54 3.20 3.60 3.96 4.74 5.10 6.75 8.40 9.10
p=15 2.73 3.58 4.10 4.18 5.51 6.15 6.66 9.30 9.81

n = 20000
p=5 2.35 2.68 2.82 3.64 4.15 4.21 5.77 6.49 6.77
p=10 2.46 3.02 3.27 3.48 4.20 4.55 5.65 6.90 7.34
p=15 2.48 3.34 3.77 3.44 4.45 5.74 6.15 7.43 7.99

n = 30000
p=5 2.22 2.35 2.20 3.70 3.99 4.11 5.80 6.33 6.75
p=10 2.31 2.51 2.97 3.72 4.06 4.32 5.81 6.39 6.91
p=15 2.41 2.93 3.33 3.81 4.19 4.69 6.07 6.65 7.24

0.5 0.75 1 1.25 1.5 1
2

3
4

0

0.5

1

1.5

2
x 10

−5

κ

θ

m
re

(a) n = 2000

0.5 0.75 1 1.25 1.5 1
2

3
4

0

1

2

3

4

5
x 10

−6

κ

θ

m
re

(b) n = 10000

Fig. 4.3: Mean squared relative error of stochastic estimation Algorithm 2 for model
covariance matrices with (κ, θ) ∈ [1 : 4]× [0.5 : 0.25 : 1.5] and s = 300.

the condition number of the covariance matrix with (κ, θ) = (4, 1.5) and n = 10000
is at least 106; it is worth noting that this is much higher than what is encountered
in practice in data uncertainty quantification. The block size is set to p = 50, and
convergence tolerances are set to tol1 = 10−10, tol2 = 10−4, tol = 10−5. The method
achieves mean relative errors of the order 10−5, which is again far more than what is
required in practice. It is worth noting also that in separate experiments we observe
errors of order 10−3 using fewer than s = 100 vectors.

Fig. 4.4 shows results with the preconditioner described in Section 3.3 for a
model covariance matrix with parameters θ = 1/2 and κ = 2, matrix size ranging
from n = 1000 to 29000 and s = 300. The code for this experiment is written in C
with calls to the multithreaded ESSL library, to run on an IBM Power7 based PS702
blade system with 16 cores and 64GB of RAM1. The left plot shows the baseline

1IBM, the IBM logo, Power, Power7, and ibm.com are trademarks or registered trademarks of

11

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

300

400

500

600

Matrix size

T
im

e
(s

ec
)

(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

1

1.5

2

2.5

3

3.5

4

4.5

Matrix size

S
pe

ed
up

(b)

Fig. 4.4: Performance of mod-init-bcg for model covariance matrices of sizes ranging
from n = 1000 to 29000 and s = 300 for values κ = 2, θ = 1

2 and block sizes p = 10
(marked “∗”), 20 (marked “◦”), 30 (marked “△”) and 50 (marked “�”). a) Without
preconditioning. b) Using matrix-free diagonal preconditioning as described in Section
3.3.

performance, without preconditioning, while the right plot shows the speedups over
these values with the static diagonal preconditioner. The preconditioner significantly
improves the performance of mod-init-bcg, especially for larger matrices.

The purpose of the next experiment is to provide an illustration of the performance
of the methods under consideration for matrices that are no longer of the model
covariance variety but are spd and sparse. These are matrices kuu, pres poisson
and trefethen2 from the University of Florida Sparse Matrix collection3. Table 4.3
shows the average number of MVs per right-hand side for s = 80, 160 for bcg, bsm,
init-bcg and mod-init-bcg using block sizes p = 2, 4 and 8. For comparison, we
include in the second column the number of MVs required by simple cg when applied
to only one such right-hand side. We consider that a method has converged when
the residual (Frobenius) norm becomes less than 10−5. On the other hand, the mean
squared relative errors for the three matrices under consideration are 0.69, 3.39 and
1.64 × 10−4 respectively for s = 80, and 0.49, 2.25 and 1.17 × 10−4 respectively for
s = 160. Evidently, mod-init-bcg converges in fewer MVs than all other methods.
Moreover, the improvement is greater as the number of right-hand sides increases.
The lowest performance of mod-init-bcg is for matrix pres poisson, whose leading
eigenvalues are isolated while the trailing ones are clustered. In this case, the method
is unable to effectively suppress the corresponding eigenvectors in the second call to
init-bcg.

International Business Machines Corp., registered in many jurisdictions worldwide. Other product
and service names might be trademarks of IBM or other companies. A current list of IBM trademarks
is available on the Web at Copyright and trademark information website.

2This matrix is from Problem 7 of the “SIAM 100-digit chal-
lenge” that sought a very good approximation of element [A−1]11; cf.
http://www-m3.ma.tum.de/m3old/bornemann/challengebook/Chapter7.

3http://www.cise.ufl.edu/research/sparse/matrices

12

Table 4.3: Average number of MVs per right-hand side for sparse spd matrices. For
comparison we list next to the “p = 2” markups the MVs for cg for a single right-hand
side.

bcg init-bcg bsm mod-init-bcg

n κ(A) s = 80 s = 80 s = 80 s = 160 s = 80 s = 160

kuu 7102 O(104)
p=2, (642) 528 392 408 360 273 261
p=4 416 256 325 310 205 190
p=8 292 182 243 236 164 141

pres poisson 14822 O(106)
p=2, (2641) 2269 1602 2001 1950 1460 1430
p=4 1907 1401 1750 1704 1350 1285
p=8 1560 1067 1500 1462 930 862

trefethen 20000 O(105)
p=2, (1631) 1110 457 813 665 380 355
p=4 725 365 596 546 268 235
p=8 503 251 427 415 224 184

5. Concluding remarks. We presented a framework for a central problem in
data uncertainty quantification, in particular the stochastic estimation of the diagonal
of the precision matrix. This is based on a method consisting of repeated application
of a special block-seed cg method followed by bcg to solve the systems that arise in
the course of the stochastic estimation. We showed that this new framework causes a
significant reduction in the overall cost if the underlying covariance matrix is dense,
spd, and a large number of stochastic samplings is required. The method is matrix-free
and also naturally leads to the construction of a diagonal preconditioner that appears
to be very effective for model covariance matrices with decaying off-diagonal entries.
Limited experimental data suggests that the underlying iterative method could also
be useful for more general sparse matrices and other application areas, however more
work is required in that direction.

Acknowledgments. The last author is grateful to Ahmed Sameh for his hospi-
tality and support at Purdue University during his sabbatical leave where part of this
work was accomplished; and to Michela Redivo-Zaglia for her hospitality in Padova
and for encouraging our participation to SC’2011. We thank Andreas Stathopoulos,
Giorgos Kollias, Marilena Mitrouli and Paraskevi Fika for useful discussions. We
are especially grateful to Gérard Meurant, editor in charge for his patient and fair
handling of the paper. We would also like to thank one of the anonymous reviewers
whose constructive criticism in matters of content and form helped us turn this into
a better paper. In our opinion, her/his gracefully written reports were exemplars of
peer reviews.

REFERENCES

[1] A. Abdel-Rehim, R. Morgan, D. Nicely, and W. Wilcox, Deflated and restarted symmetric
Lanczos methods for eigenvalues and linear equations with multiple right-hand sides, SIAM
J. Sci. Comput., 32 (2010), pp. 129–149.

[2] A. Abdel-Rehim, R. Morgan, and W. Wilcox, Improved seed methods for symmetric positive
definite linear equations with multiple right-hand sides. arXiv:0810.0330v1 [math-ph], 2008.

13

[3] M. Anitescu, J. Chen, and L. Wang, A matrix-free approach for solving the Gaussian process
maximum likelihood problem, SIAM J. Sci. Comput., (To appear).

[4] H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix, J. ACM, 58 (2011), p. 8.

[5] Z. Bai, M. Fahey, and G. Golub, Some large-scale matrix computation problems, J. Comput.
Appl. Math., 74 (1996), pp. 71–89.

[6] Z. Bai and G. Golub, Bounds for the trace of the inverse and the determinant of symmetric
positive definite matrices, Ann. Num. Math., 4 (1997), pp. 29–38.

[7] C. Bekas, A. Curioni, and I. Fedulova, Low cost high perf. uncertainty quantification, in
Worskhop on High Performance Computational Finance, Supercomputing’09, Portland,
Portland, Oregon, 2009.

[8] C. Bekas, A. Curioni, and I. Fedulova, Low-cost data uncertainty quantification, Concur-
rency and Computation: Practice and Experience, (2011).

[9] C. Bekas, E. Kokiopoulou, and Y. Saad, An estimator for the diagonal of a matrix, Appl.
Numer. Math., 57 (2007), pp. 1214–1229.

[10] C. Bekas, E. Kokiopoulou, and Y.Saad, Computation of large invariant subspaces using
polynomial filtered Lanczos iterations with applications in density functional theory, SIAM
J. Matrix Anal. Appl., 30 (2008), pp. 397–418.

[11] R. Bouyouli, K. Jbilou, R. Sadaka, and H. Sadok, Convergence properties of some block
Krylov subspace methods for multiple linear systems, J. Comp. Appl.Math., 196 (2006),
pp. 498–511.

[12] C. Brezinski, P. Fika, and M. Mitrouli, Moments of a linear operator, with applications to
the trace of the inverse of matrices and the solution of equations, Numer. Lin. Alg. Appl.,
(2011).

[13] G. Cao, L. Bachega, and C. Bouman, The sparse matrix transform for covariance estimation
and analysis of high dimensional signals, IEEE Trans. Image Proc., 20 (2011), pp. 625–640.

[14] T. Chan and W. Wan, Analysis of projection methods for solving linear systems with multiple
right-hand sides, SIAM J. Sci. Stat. Comput., 18 (1997), pp. 1698–1721.

[15] J. Chen, A deflated version of the block conjugate gradient algorithm with an application to
Gaussian process maximum likelihood estimation, Preprint ANL/MCS-P1927-0811, Ar-
gonne Nat’l. Lab., 2011.

[16] L. Du, T. Sogabe, B. Yu, Y. Yamamoto, and S. L. Zhang, A block IDR(s) method for
nonsymmetric linear systems with multiple right-hand sides, J. Comput. Appl. Math., 235
(2011), pp. 4095–4106.

[17] L. Giraud, D. Ruiz, and A.Touhami, A comparative study of iterative solvers exploiting
spectral information for spd systems, SIAM J. Sci. Comput., 27 (2006), pp. 1760–1786.

[18] G. Golub and G. Meurant, Matrices, Moments and Quadrature with Applications, Princeton
Univ. Press, 2010.

[19] G. Golub, D. Ruiz, and A. Touhami, A hybrid approach combining Chebyshev filter and con-
jugate gradient for solving linear systems with multiple right-hand sides, SIAM J. Matrix
Anal. Appl., 29 (2007), pp. 774–795.

[20] M. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides:
An introduction, in Modern Mathematical Models, Methods and Algorithms for Real World
Systems, A. Siddiqi, I. Duff, and O. Christensen, eds., Anamaya Publishers, New Delhi,
India, 2007, pp. 420–447.

[21] J. Hartlap, P. Simon, and P. Schneider, Why your model parameter confidences might
be too optimistic – unbiased estimation of the inverse covariance matrix, Astronomy &
Astrophysics, 464 (2007), pp. 399–404.

[22] M. Hutchinson, A stochastic estimator for the trace of the influence matrix for Laplacian
smoothing splines, Comm. Stat. - Simul. and Comput., (1989).

[23] M. Kilmer, E. Miller, and C. Rappaport, QMR-based projection techniques for the solution
of non-Hermitian systems with multiple right-hand sides, SIAM J. Sci. Comput., 23 (2001).

[24] O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance ma-
trices, J. Multiv. Anal., 88 (2004), pp. 365–411.

[25] L. Lin, C. Yang, J. Meza, J. Lu, L. Ying, and W. E, SelInv – an algorithm for selected
inversion of a sparse symmetric matrix, ACM Trans. Math. Softw., 37 (2011), pp. 40:1–
40:19.

[26] G. Meurant, Estimates of the trace of the inverse of a symmetric matrix using the modified
Chebyshev algorithm, Num. Alg., 51 (2009), pp. 309–318.

[27] D. O’Leary, The block conjugate gradient algorithm and related methods, Lin. Alg. Appl., 29
(1980), pp. 293–322.

[28] D. S. Oliver, Calculation of the inverse of the covariance, Math. Geol., 30 (1998), pp. 911–933.

14

[29] M. Parks, E. de Sturler, G. Mackey, D. Johnson, and S. Maiti, Recycling Krylov sub-
spaces for sequences of linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 1651–1674.

[30] B. N. Parlett, A new look at the Lanczos algorithm for solving symmetric systems of linear
equations, Lin. Alg. Appl., 29 (1980), pp. 323–346.

[31] Y. Saad, On the Lanczos method for solving symmetric systems with several right hand sides,
Math. Comp., 48 (1987), pp. 651–662.

[32] V. Simoncini and E. Gallopoulos, An iterative method for nonsymmetric systems with mul-
tiple right-hand sides, SIAM J. Sci. Comput., 16 (1995), pp. 917–933.

[33] C. F. Smith, A. F. Peterson, and R. Mittra, A conjugate gradient algorithm for the
treatment of multiple incident electromagnetic fields, IEEE Trans. Ant. Prop., 37 (1989),
pp. 1490–1493.

[34] A. Stathopoulos and K. Orginos, Computing and deflating eigenvalues while solving multiple
right-hand hide linear systems with an application to quantum chromodynamics, SIAM J.
Sci. Comput., 32 (2010), pp. 439–462.

[35] G. Stevens, On the inverse of the covariance matrix in portfolio analysis, J. Finance, 53
(1998), pp. 1821–1827.

[36] J. Tang and Y. Saad, A probing method for computing the diagonal of a matrix inverse, Num.
Lin. Alg. Appl., 19 (2012), pp. 485–501.

[37] K. Visweswariah, P. Olsen, R. Gopinath, and S. Axelrod, Maximum likelihood training
of subspaces for inverse covariance modeling, in Proc. ICASSP, vol. 1, 2003, pp. 848–851.

15

