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Abstract—In this paper, we propose EIGENREC; a simple
and versatile Latent Factor framework for Top-N Recommen-
dations, which includes the well-known PureSVD algorithm as
a special case. EIGENREC builds a low dimensional model of an
inter-item proximity matrix that combines a traditional similar-
ity component, with a scaling operator, designed to regulate the
effects of the prior item popularity on the final recommendation
list. A comprehensive set of experiments on the MovieLens
and the Yahoo datasets, based on widely applied performance
metrics suggest that EIGENREC outperforms several state-
of-the-art algorithms, in terms of Standard and Long-Tail
recommendation accuracy, while exhibiting low susceptibility
to the problems caused by Sparsity, even its most extreme
manifestations – the Cold-start problems.
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I. INTRODUCTION

Collaborative Filtering (CF) is commonly regarded as one
of the most effective approaches to building Recommender
Systems (RS). Given a set of users, a set of items and –
implicitly or explicitly – stated opinions about how much
a user likes or dislikes the items he has already seen,
CF techniques try to build “neighborhoods”, based on the
similarities between users (user-oriented CF) or items (item-
oriented CF) as depicted from the data, in order to predict
preference scores for the unknown user-item pairs, or pro-
vide a list of items that the user might find preferable.

Despite their success in real application settings, CF
methods suffer several problems that remain to be resolved.
One of the most significant such problems arises from the
insufficiency of available data and is typically referred to as
the Sparsity problem [1]. Sparsity is known to impose severe
limitations to the quality of recommendations [2], and to
decrease substantially the diversity and the effectiveness of
CF methods – especially in recommending unpopular items
(Long-Tail problem) [3]. Unfortunately, sparsity is an innate
characteristic of recommender systems since in the majority
of realistic applications, users interact with only a small
percentage of the available items, with the problem being
intensified even more, by the fact that newcomers with no
ratings at all, are frequently added to the system (Cold-Start
problem [2], [4]).

Although traditional CF techniques are very vulnerable
to sparsity, Graph-Based methods manage to cope a lot
better [1]. The fundamental characteristic that makes the

methods of this family particularly suited for alleviating
problems related to limited coverage and sparsity is that they
allow elements of the dataset that are not directly connected
to “influence” each other by propagating information along
the edges of the graph [1]. Then, the transitive relations
captured in this way, are used to recommend items either by
estimating measures of proximity between the corresponding
nodes [5] or by computing node similarity scores between
them [6].

While promising in dealing with sparsity problems, the
unprecedented growth of the number of users and listed
items in modern e-commerce applications make many graph-
based CF techniques suffer serious computational and scal-
ability issues. Latent Factor methods, on the other hand,
present a more viable alternative [1], [7]–[10]. The fun-
damental premise behind using latent factor models for
building recommender systems is that user’s preferences
are influenced by a set of “hidden taste factors” that are
usually very specific to the domain of recommendation
[8]. These factors are generally not obvious and might
not necessarily be intuitively understandable. Latent Factor
algorithms, however, can infer those factors by the user’s
feedback as depicted in the rating data. Generally speaking,
the methods in this family work by projecting the elements
of the recommender database into a denser subspace that
captures their most meaningful features, giving them the
power to relate previously unrelated elements, and thus
making them less susceptible to sparsity [1].
Summary of Contributions In this work we follow a latent
factor-based approach and we propose a generic recommen-
dation framework that combines computational efficiency
with the necessary modeling freedom for achieving high-
quality outcomes even in the presence of extreme sparsity.
The method we propose – which we call EIGENREC – works
by building a low-dimensional subspace of a novel proximity
matrix comprising scaled inter-item similarity scores. The
pure similarity component can be defined utilizing any
reasonable measure one sees fit for the recommendation
problem under consideration; in this work, we make use
of three simple similarity functions that were found to
achieve very good performance in the movie and the song
recommendation problems. The scaling component, on the
other hand, allows fine-tuning the influence of the prior
item popularity on the final proximity scores; a property



that was found to enable our method to markedly improve
the produced recommendation lists. To evaluate the per-
formance of our method we conduct a comprehensive set
of qualitative experiments on the MovieLens and Yahoo
datasets and we show that EIGENREC produces recommen-
dations that outperform several state-of-the-art methods in
widely used metrics, achieving high-quality results even in
the considerably harder task of recommending Long-Tail
items. EIGENREC displays low sensitivity to the sparsity
of the underlying space and shows promising potential in
alleviating several related problems that occur commonly
in recommender systems. This is true both in the very
interesting case where sparsity is localized in a small part
of the dataset – as in the New Users problem, and in the
case where extreme levels of sparsity are found throughout
the data – as in the New Community problem.

II. EIGENREC RECOMMENDATION FRAMEWORK

A. EigenRec Model Definitions
Let U = {u1, . . . , un} be a set of users and V =
{v1, . . . , vm} be a set of items. Let R be a set of tuples
tij = (ui, vj , rij), where rij is a nonnegative number
referred to as the rating given by user ui to the item vj , and
let R ∈ Rn×m be a matrix whose ijth element contains the
rating rij if the tuple tij belongs in R, and zero otherwise.
These ratings can either come from the explicit feedback of
the user or inferred by the user’s behavior and interaction
with the system.
Inter-Item Proximity Matrix A. The Inter-Item Proximity
matrix is designed to quantify the relations between the
elements of the item space, as properly scaled pure similarity
scores. Specifically, matrix A ∈ Rm×m is a symmetric
matrix, with its ijth element given by:

Aij , ξ(i, j) · κ(i, j), (1)

where ξ(·, ·) : V × V 7→ [0,∞) is a symmetric scaling
function and κ(·, ·) : V × V 7→ R is a symmetric similarity
function.
Scaling Component. The definition of the scaling function
can be done in many different ways, subject to various
aspects of the recommendation problem at hand. In this
work, we deploy this function as an easy way to regulate
how much the inter-item proximity scores are affected by
the prior popularity of the corresponding items. This was
found to be very important for the overall recommendation
quality as we will see in the experimental section of our
paper. In particular, for the scaling function ξ(·, ·), we use
the simple symmetric function

ξ(i, j) , (‖ri‖‖rj‖)d. (2)

where ri denotes the ith column of matrix R. Notice that the
definition of the scaling function allows the final inter-item
proximity matrix to be written in factorial form:

A = SKS (3)

where S , diag{‖r1‖, ‖r2‖, . . . , ‖rm‖}d, and where matrix
K (the ijth element of which is defined to be κ(i, j)),
denotes the pure similarity component.
Similarity Component. The definition of the similarity
matrix K can be approached in several ways, depending
on the nature of the recommendation task, the size of the
itemset etc. Note that the final offline computational cost
of the method may depend significantly on the choice of
matrix K – especially when this matrix needs to be explicitly
computed in advance or learned from the data. Having this
in mind, in this work we propose using three widely used
and simple similarity matrices that were found to be able to
attain good results, while being easily manageable from a
computational standpoint: (a) the Cosine Similarity, (c) the
Pearson-Correlation Similarity and finally (c) the Jaccard
Similarity.
Cosine Similarity KCOS. The similarity function κ(·, ·) is

defined to be the cosine of the angle between the vector
representation of the items vi, vj , Kij , cos(vi, vj) .

Pearson Similarity KPC. The similarity score between two
items vi and vj is defined as the ijth element of matrix
KPC which is given by

Kij ,
Cij√
CiiCjj

, (4)

with Cij denoting the covariance between the vector
representation of the items vi, vj .

Jaccard Similarity KJAC. The Jaccard similarity between
two items is defined as the ratio of the number of users
that have rated both items to the number of users that
have rated at least one of them. Specifically,

Kij ,
|Ri ∩Rj |
|Ri ∪Rj |

, (5)

where Ri the set of users that have rated item i.
Recommendation Matrix Π. The final recommendation
matrix contains the recommendation vectors for each user in
the system. In particular, for each user ui the corresponding
personalized recommendation vector is given by:

πᵀ
i , rᵀi VVᵀ, (6)

where rᵀi the ratings of user ui and V ∈ Rm×f is the
matrix whose columns contain the f principal orthonormal
eigenvectors of the inter-item proximity matrix A. Observe
that since A is real and symmetric, its eigenvectors are real
and can be chosen to be orthogonal to each other and of
unity norm.

B. Building the Latent Space

The specific properties of our model (symmetry and spar-
sity), allow us to use the symmetric Lanczos algorithm [11]
– an iterative Krylov subspace method for solving symmetric
eigenvalue problems – for building the latent space, V, and
producing the recommendation lists efficiently. The detailed



computation of our recommendation matrix Π is given
below.

Algorithm 1 EIGENREC

Input: Inter-Item proximity matrix A ∈ Rm×m. Rating
Matrix R ∈ Rn×m. Latent Factors f .
Output: Matrix Π ∈ Rn×m whose rows are the recommen-
dation vectors for every user.

1: qj = 0, set r← q as a random vector
2: β0 ← ‖r‖2
3: for j ← 1, 2, ..., do
4: qj ← r/βj−1
5: r← Aqj

6: r← r− qj−1βj−1
7: αj ← qᵀ

j r
8: r← r− qjαj

9: r← (I−QjQ
ᵀ
j )r, . where Qj = [q1, . . . ,qj]

10: βj ← ‖r‖2
11: Solve the tridiagonal problem (Qᵀ

j AQj)Ξj = ΘjΞj

12: Form the j approximate eigenvectors QjΞj of A
13: If the f top eigenvectors have converged, stop.
14: end for
15: Compute latent factors V = QfΞ
16: return Π← RVVᵀ

Computational Cost: The total cost introduced by the
Matrix×Vector (MV) products in j Lanczos steps amounts
to O(j · nnz ), with nnz denoting the number of non-zero
entries in matrix A, whereas making the jth Krylov vector
orthogonal to the previous ones costs O(jm). If a large
latent space must be built, the Lanczos procedure can be
combined with polynomial filtering to accelerate the rate
of convergence, e.g. see [12] for a related discussion and
implementation.

C. PureSVD within EigenRec

A recent successful example of ranking-based latent factor
recommendation algorithm is PureSVD [13]. This algorithm
considers all missing values in the user-item rating matrix,
R, as zeros, and produces recommendations by estimating
R by the factorization

R̂ = UfΣfQ
ᵀ
f , (7)

where, Uf is an n× f orthonormal matrix, Qf is an m× f
orthonormal matrix, and Σf is an f × f diagonal matrix
containing the f largest singular values. The rows of matrix
R̂ contain the recommendation vectors for every user in the
system. In what follows we will show that PureSVD is a
simple member of the EigenRec family. In particular, let us
consider the full singular value decomposition of R:

R = UΣQᵀ. (8)

If we multiply equation (8) from the right with the orthonor-
mal matrix Q, we get RQ = UΣ. Now if we use If to

denote the f×f identity matrix and we multiply again from
the right with the m×m matrix

(
If 0
0 0

)
, we get

R (Qf 0 ) = U
(

Σf 0
0 0

)
⇒ RQf = UfΣf . (9)

Substituting equation (9) in (7) gives

R̂ = RQfQ
ᵀ
f . (10)

Relation (10) shows that the recommendation matrix of
PureSVD can be expressed only in terms of the ratings
matrix and matrix Qf that contains the orthonormal set of
eigenvectors that correspond to the f principal eigenvalues
of the symmetric matrix

RᵀR ≡




users

items — rᵀi —


×




items
|

users rj

|




=




items

items ·

 ‖ri‖‖rj‖︸ ︷︷ ︸

scaling

·cos θij︸ ︷︷ ︸
similarity

.

Therefore, the latent factor model of PureSVD is essen-
tially built from the eigendecomposition of a scaled cosine-
based inter-item similarity matrix; i.e. the final recommen-
dation matrix of PureSVD coincides with that produced
by our method, using the similarity matrix KCOS and the
standard scaling matrix S with parameter d = 1. Seeing
PureSVD within our framework hints that its default choice
for the parameter d makes it overly sensitive to the prior
popularity of the items and, as we will observe in our
experimental section, it is exactly this suboptimal implicit
choice of scaling that inevitably limits its quality.

Moreover, from a purely computational perspective, the
above observation reduces the extraction of PureSVD’s
recommendation matrix to the calculation of the f principal
eigenvectors of a symmetric matrix that can be expressed as
a product of sparse factors; a fact that decreases significantly
its overall computational and storage needs. To quantify the
time difference that arises from the exploitation of EIGEN-
REC’s equivalent formulation for computing PureSVD, we
run the two algorithms in MATLAB, on the MovieLens10M
and MovieLens20M datasets [14], using in both cases
MATLAB’s native functions and the same convergence crite-
rion. Figure 1 reports the results. As predicted, with our
approach, PureSVD is computed significantly faster, with
the speedup increasing with the dimension of the desired
latent space ranging from 6 to 16 times faster computation
for latent factors in the range [50, . . . , 500].

III. EXPERIMENTAL EVALUATION

The recommendation quality of our method was tested
using data originated from two recommendation domains,
namely Movie Recommendation – where we exploit the
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Figure 1. PureSVD’s computation speed up using EIGENREC’s formula-
tion for latent factors in the range [50, . . . , 500].

standard MovieLens1M dataset [14] that has been used
widely for the qualitative evaluation of recommender sys-
tems; and Song Recommendation – where we used the
Yahoo!R2Music dataset [15] which represents a snapshot
of the Yahoo!Music community’s preferences for different
songs. More details about the datasets can be found in [14],
[15]. For our qualitative experiments, except for the standard
Recall and Precision metrics we also use a number of
well known utility-based measures, that have been proposed
for the evaluation of the quality of top-N recommendation
algorithms [16], namely the Normalized Discounted Cu-
mulative Gain (NDCG) – which assumes that the utility of
the recommendation is discounted logarithmically fast down
the recommendation list; the R-Score – which assumes that
the value of recommendations declines exponentially fast;
and the Mean Reciprocal Rank (MRR) – which is the
average of the reciprocal rank scores and assumes a slower
decay than R-Score but faster than NDCG. For detailed
definitions of the metrics due to space constrains we refer
the reader to [16].

We compare EIGENREC1 against a number of methods of
the graph-based top-N recommendation family, that are con-
sidered to be highly promising in dealing with sparsity [1].
The five competing methods used in our experiments are: the
Pseudo-Inverse of the user-item graph Laplacian (L†), the
Matrix Forest Algorithm (MFA), the Regularized Commute
Time (RCT), the Markov Diffusion Kernel (MD) and the
Relative Entropy Diffusion (RED). For further details about
the competing methods the reader should see [6] and the
references therein.

A. Quality of Top-N Recommendations

For our recommendation quality comparison tests we used
the complete MovieLens1M dataset (denoted ML1M) and –
following the dataset preparation approach used by Karypis

1We make available a parallel implementation of our algorithm here:
https://github.com/nikolakopoulos/EigenRec. For the implementation de-
tails as well as computational experiments see our extended technical
report [17].

et al. in [18] – a randomly selected subset of the Yahoo!
Research Alliance Webscope Dataset (denoted Yahoo) with
3312 items and 7307 users.

Except for the Standard Recommendation, we also test
the performance of our method in dealing with two very
challenging and realistic scenarios that are linked to the
inherent sparsity of typical recommender systems datasets.
Namely, the Long-Tail Recommendation, where we evaluate
the ability of our method in making useful recommendations
of unpopular items, and the Cold-Start Recommendation,
where we evaluate how well it does in recommending items
for New Users in an existing recommender system (localized
sparsity) as well as making recommendations for a New
Community of users in the starting stages of the system.

1) Standard Recommendations: To evaluate the quality
of EIGENREC in suggesting top-N items, we have adopted
the methodology proposed by Cremonesi et al. in [13]. In
particular, we form a probe set P by randomly sampling
1.4% of the ratings of the dataset, and we use each item
vj , rated with 5-star by user ui in P to create the test
set T . For each item in T , we select randomly another
1000 unrated items of the same user, we rank the complete
lists (containing 1001 items) using each of the competing
methods, and we measure the respective recommendation
quality.

First we test the recommendation performance of EIGEN-
REC in the MRR metric for scaling parameters in the range
[−2, 2] using all three similarity matrices. We choose the
MRR metric for this test simply because it can summarize
the recommendation performance in a single number which
allows direct comparisons between different similarity ma-
trices as well as different scaling parameters for each given
matrix. Figure 2 reports the MRR scores as a function of
the parameter d for every case, using the number of latent
factors that produces the best possible performance for each
matrix.
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Figure 2. Recommendation performance of EIGENREC on the MRR metric
for scaling factors in the range [−2, 2] using all three similarity matrices.

We see that the best performance is achieved for small
positive values of parameter d. This was true for every
similarity matrix tested, and for both datasets. Notice that
this parameter was included in our model as a means to
control the sensitivity of the inter-item proximity scores to
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Figure 3. Evaluation of the recommendation quality using the Recall@N, Precision, NDCG@N and RScore metrics.

the prior popularity of the items under consideration. Our
results suggest, that while this popularity is important (i.e.
every time the best performing scaling factor was strictly
positive), its contribution to the final matrix A should
be weighted carefully so as not to overshadow the pure
similarity component.

We see that all variations of our method outperform
PureSVD every time, with the performance gap being sig-
nificantly larger for the Yahoo dataset, which had a steeper
performance decay as the scaling factors moved towards
1 (see Figure 2). Recall that the “black box” approach of
the traditional PureSVD assumes cosine similarity (which is
usually great) with scaling parameter d equal to 1 (which is
usually not). As can be seen in Figure 2, simply controlling
parameter d alone results to significant recommendation
performance gains with respect to PureSVD. We find this
particularly interesting, as it uncovers a fundamental lim-
itation of the traditional PureSVD approach, that can be
trivially alleviated with our approach.

We also compare EigenRec against the five graph-based
methods mentioned in the beginning of this section. For
these comparisons, we used the Jaccard similarity matrix.
We tested each method for many different values of the
parameters for every dataset and we report the best results
achieved for each experiment. Figure 3 reports the Recall
as a function of N (i.e. the number of items recommended)
the Precision as a function of the Recall, the Normalized
Discounted Cumulative Gain as a function of N and the
RScore as a function of the halflife parameter α, for the
Yahoo (first row) and the MovieLens1M (second row)
datasets. As for Recall(N ) and NDCG@N, we consider
values of N in the range [1, . . . , 20]; larger values can be
safely ignored for a typical top-N recommendation task [13].
As we can see, EIGENREC outperforms every other method
considered, for all datasets and in all metrics, reaching for

example, at N = 10 a recall around 60%. This means that
60% of the 5-starred items were presented in the top-10
out of the 1001 places in the recommendation lists of the
respective users.

2) Long-Tail Recommendations: The distribution of rated
items in recommender systems is long-tailed, i.e. most of
the ratings are concentrated in a few very popular items,
leaving the rest of the itemspace unevenly sparse. Of course,
recommending popular items is an easy task, adding little
utility in recommender systems; on the other hand, the
task of recommending long-tail items adds novelty and
serendipity to the users [13], and it is also known to increase
substantially the profits of e-commerce companies [3], [19].
The innate sparsity of the problem however – which is
aggravated even more for long-tail items – presents a major
challenge for the majority of state-of-the-art collaborative
filtering methods.

To evaluate EIGENREC in recommending long-tail items,
we adopt the methodology described in [13]. In particular,
we order the items according to their popularity which was
measured in terms of number of ratings, and we partition
the test set T into two subsets, Ttail and Thead, that involve
items originated from the long-tail, and the short-head of the
distribution respectively. We discard the items in Thead and
we evaluate EIGENREC and the other algorithms on the Ttail
test set, using the procedure explained in Section III-A1.

Having evaluated the performance of EIGENREC in the
MRR metric for all three similarity matrices, we obtained
very good results for every case, with marginally better
recommendation quality achieved for the Jaccard similarity
component with 241 and 270 latent factors and scaling factor
0.2 and 0.4 for the Yahoo and the MovieLens1M datasets
respectively. Proceeding with these parameter settings we
run EIGENREC against the other graph-based algorithms
and we report the results in Figure 4. It is interesting to
notice that MFA and L† do particularly well in the long-
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Figure 4. Evaluation of the Long-Tail recommendation quality using the Recall@N, Precision, NDCG@N and RScore metrics.

tail recommendation task, especially in the sparser Yahoo
dataset. They even manage to surpass RED, which had
reached the second place when the popular items were
included (Figure 3). Once again, we see that EIGENREC
achieves the best results, in all metrics and for both datasets.

We have seen that both in standard and long-tail recom-
mendation scenarios, our approach gives very good results,
consistently outperforming – besides PureSVD – a number
of elaborate graph-based methods, known to work very well
in uncovering nontrivial similarities through the exploitation
of transitive relations that the graph representation of the
data brings to light [1]. In our final set of experiments,
presented next, we test the performance of EIGENREC in
dealing with sparsity in its most extreme manifestations; the
Cold-Start Problems.

3) Cold-Start Recommendations: The cold-start problem
refers to the difficulty of making reliable recommenda-
tions due to an initial lack of ratings [2]. This is a very
common problem faced by real recommender systems in
their beginning stages, when the number of ratings for
the collaborative filtering algorithms to uncover similarities
between items or users are insufficient (New Community
Problem). The problem can arise also when introducing
new users to an existing system (New Users Problem);
typically new users start with only a few ratings, making it
difficult for the collaborative filtering algorithm to produce
reliable personalized recommendations. This can be seen as
a type of localized sparsity problem and it represents one
of the ongoing challenges faced by recommender systems
in operation.
New Community Problem: To test the performance of
EIGENREC in dealing with the new community problem,
we conduct the following experiment: We simulate the
phenomenon by randomly selecting to include 33%, and
66% of the Yahoo dataset on two new artificially sparsified
versions in such a way that the first dataset is a subset of

the second. The idea is that these new datasets represent
snapshots of the initial stages of the recommender system,
when the community of users was new and the system was
lacking ratings [20]. Then, we take the new community
datasets and we create test sets following the methodology
described in Section III-A1; we run all the algorithms and
we evaluate their performance using the MRR, which makes
it easier to compare the top-N quality for the different
stages in the system’s evolution. We test for both standard
and long-tail recommendations and we report the results in
Figure 5. We clearly see that EIGENREC outperforms every
other algorithm, even in the extremely sparse initial stage
where the system is lacking 2/3 of its ratings. In the figure,
we report the qualitative results using the Cosine similarity
this time, however, the performance of the three similarity
components we propose was found to be equally good.

New Users Problem: In order to evaluate the performance of
our algorithm in dealing with new users, we again use the
Yahoo dataset and we run the following experiment. We
randomly select 50 users having rated 100 items or more,
and we randomly delete 95% of their ratings. The idea is
that the modified data represent an “earlier version” of the
dataset, when these users were new to the system, and as
such, had fewer ratings. Then, we take the subset of the
dataset corresponding to these new users and we create the
test set as before, using 10% as a cut-off for the Probe Set
this time, in order to have enough 5-rated movies in the Test
Set to estimate reliably the performance quality. The results
are presented in Figure 6. We see that EIGENREC manages
to outperform all competing algorithms in all metrics as
before.

4) Discussion: The qualitative results presented above
indicate that our method is able to produce high quality
recommendations, alleviating significant problems related to
sparsity. Let us mention here that the competing algorithms
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Figure 6. New-Users recommendation quality using the Recall@N, Precision, NDCG@N and RScore metrics.

are considered among the most promising methods in the
literature to address sparsity problems [1]. This was verified
in our experiments as well. Indeed, our results clearly show
that the graph-based methods perform very well with their
comparative performance increasing with the sparsity of the
underlying dataset, and reaching its maximum in the cold-
start scenarios. EIGENREC nonetheless managed to perform
even better, in every recommendation setting considered,
being at the same time by far the most economical method
from a computational point of view. Note here, all competing
methods require handling a graph of m + n nodes (where
m the number of items and n the number of users), with
the extraction of the recommendation scores many times
involving inversions of (m + n)-dimensional square matri-
ces etc. – problems that easily become intractable as the
population of users in the system increases. EIGENREC, on
the contrary having a significantly friendlier computational
profile, denotes a qualitative and feasible option for realistic
top-N recommendation settings.

The choice of the scaling factor was found to be partic-
ularly significant for each and every pure similarity compo-
nent. For the cosine similarity, in particular, we observed that
the best results were always achieved for scaling parameters
away from 1, making the traditional PureSVD algorithm,
“qualitatively dominated” in every case considered. Re-
garding the best choice for the pure similarity compo-
nent, the differences in recommendation quality observed
in our experiments were relatively small. Therefore, our
observations suggest that – at least for the recommendation
scenarios considered in this work – all three simple inter-

item proximity matrices present good candidates for high
quality recommendations, with the KCOS being slightly more
convenient to handle computationally.

IV. REMARKS ON RELATED WORK

Factorization of a sparse similarity matrix was used to
predict ratings of jokes in the EigenTaste system [9]. The
authors first calculate the Pearson’s correlation scores be-
tween the jokes and then form a denser latent space in which
they cluster the users. The predicted rating of a user about a
particular item is then calculated as the mean rating of this
item, made by the rest of the users in the same cluster. The
approach followed here differs significantly. The fact that we
pursue ranking-based recommendations grants us the flexi-
bility of not caring about the exact recommendation scores
and allows us to introduce our novel proximity matrix, which
except its pure similarity core also includes an important
scaling component which was found to greatly influence the
overall quality in every recommendation scenario.

The computational core of our method is the classic
Lanczos algorithm that has been extensively used in the
context of numerical linear algebra for the computation
of the eigenvectors and/or singular triplets of large sparse
matrices. From a qualitative perspective, Chen and Saad [21]
have recently examined the use of Lanczos vectors in appli-
cations where the major task can be reduced to computing
a matrix-vector product in the principal singular directions
of the data matrix; they demonstrated the effectiveness of
this approach on two different problems originated from
information retrieval and face recognition. Also, in [22] the



authors examine the use of Lanczos vectors for a very fast
“crude” construction of a latent space that avoids overfitting
extremely sparse datasets.

V. CONCLUSIONS

In this work, we proposed EIGENREC; a versatile and
computationally efficient latent factor framework for top-
N recommendations; EIGENREC works by building a low-
dimensional subspace of a novel inter-item proximity matrix
consisting of a similarity and a scaling component. We
showed that the well-known PureSVD algorithm can be seen
within our framework and we demonstrate experimentally
that its implicit suboptimal treatment of the prior popularity
of the items inevitably limits the quality of the recommenda-
tion lists it yields; a problem that can be painlessly alleviated
through our approach.

An interesting direction that we are currently pursuing
involves the definition of richer inter-item proximity ma-
trices and the exploration of their effect in recommendation
quality. In this paper, we restricted ourselves in using simple
components that can be handled very efficiently from a com-
putational point of view while being able to yield very good
recommendations. We performed a comprehensive set of
experiments on real datasets and we showed that EIGENREC
achieves very good results in widely used metrics against
several state-of-the-art collaborative filtering techniques. Our
method was also found to behave particularly well even
when the sparsity of the dataset is severe – as in the
New Community and the New Users versions of the Cold-
Start problem – where it outperformed all other methods
considered, including the very promising for their anti-
sparsity properties graph-based techniques. In conclusion,
our findings suggest that both the computational profile
of EIGENREC and its qualitative performance make it a
promising candidate for the Standard, Long-Tail and Cold-
Start recommendation tasks even in big data scenarios.
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