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ABSTRACT

We propose Quantum Graph Transformers (QGT), a novel ap-
proach for realizing the Transformer architecture for graph learning
with quantum processors. QGT is built on top of the Graph Trans-
former (GT) architecture and addresses the main challenge of map-
ping GT basic functions such as node encodings, graph structure,
all-to-all connectivity, and message passing to quantum computing
primitives and processors. We empirically demonstrate the training
and inference efficacy of our proposed QGT architecture for the graph
classification task on quantum devices over various graph datasets.

1. INTRODUCTION

Graphs are ubiquitous and among the most general data structures,
spanning diverse application areas from interactions in biology, to
drug design, financial transactions, and social relations. Graph anal-
ysis holds the key to critically useful insights and optimizations of
modelled processes as well as the organization of connected entities.
Graph AI has emerged as a new and thriving research subfield of
graph analytics to expand learning on graphs using neural network
architectures which produce vector representations (embeddings)
for vertices, edges and subgraphs. Such resulting embeddings have
proven to be highly effective for an abundant repertoire of graph
analysis tasks, including node classification, link prediction, and
graph property estimation. Graph Neural Networks (GNNs) have
been at the forefront of these developments by generalizing the idea
of message passing, where exchanged messages are representations
of graph primitives that are linearly transformed and combined in a
non-linear manner. Such transformations are learnt by optimizing
a task-dependent objective while messages flow along graph edges.
More recently, graph AI has been enriched with Graph Transformers
(GTs) that originate from research in Natural Language Processing
(NLP). GTs improve upon GNNs for some analytic tasks because
they assume an all-to-all graph connectivity and can learn hidden
links which are not present in the original graph structure.

The above discussion considers a classical computing context. In
this paper we introduce a Quantum Graph Transformer (QGT) archi-
tecture for quantum computing[1]. Quantum computing promises a
sweeping change on the envelope of what actually lies within the prac-
tical limits of computational reach. Within the last few decades, quan-
tum computers have transcended from an exotic mode of performing
calculations, to real programmable devices which can challenge the
capabilities of very large distributed memory digital (classical) com-
puters on tasks such as Topological Data Analysis [2, 3] and solution
of systems of linear algebraic equations [4, 5, 6]. Of particular inter-
est are algorithms which lie at the intersection of AI and quantum
computing spanning the research field of Quantum Machine Learning
(QML) [7].
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Graph learning has not yet been extensively studied from a quan-
tum computing viewpoint. In this paper, we aim to advance practice
in this topic. We explore the design space of mapping Graph Trans-
former (GT) models to quantum computing primitives and identify
commonly used patterns: (i) graph node encodings are captured in
qubit states and graph edges translate to two-qubit gates of a quantum
circuit, (ii) parametric rotation and control gates contain learnable
parameters. The QGT architecture uses the above principles and
addresses the challenge of mapping GT primitives such as message
passing and graph encodings to quantum computing primitives and
infrastructure.

QGT is built on top of a GT architecture and incorporates two
circuits which translate 1) the graph structure and 2) the all-to-all
GT attention and message passing mechanisms to quantum comput-
ing primitives. More specifically, QGT provides a direct mapping
between qubits and graph nodes. The structure of the graph is repre-
sented via an encoding quantum circuit which obeys the graph edge
connectivity. The state of qubits is manipulated by a combination of
Hadamard and controlled-Z gates. The output quantum graph state
[8] serves as the quantum representation of the given graph. All-to-all
node interactions with learnable weights for the GT message passing
are represented by a variational quantum circuit that connects all
possible node pairs. Connection between two nodes is implemented
through a controlled-X gate between two qubits.

We perform an empirical evaluation of QGT on quantum devices
that solve graph classification problems. Our results on a variety of
input graphs demonstrates that QGT is effective and computationally
attractive in minimizing training loss. They also confirm the attrac-
tiveness of learning variational circuit parameters in QPU device
configurations for inference purposes.

Our main contributions can be summarized as follows:

• We propose a QGT architecture that cleanly isolates graph
encoding and all-to-all message passing, which are the two
key functions in GTs, in separate, connected circuits: the
encoding and variational quantum circuits.

• We successfully train the QGT model for performing a graph
classification task and demonstrate the learning capability
of our architecture by tracking loss degradation and average
precision score improvement during training.

• We implement QGT on a range of simulated QPU devices,
calibrate by directly transferring the parameters of the trained
model and experimentally confirm the efficacy in inference for
our task on the QPU configurations.

To the best of our knowledge, this is the first effort to propose a QGT
architecture, successfully experiment with it and reason about its
high-level connections to classical counterparts.



2. RELATED WORK

Our proposed QGT builds on key architectural elements found in
GTs and targets QML applications. GTs fuse ideas from GNNs and
Transformers which are important learning structures in AI.

The GNN model can be traced back in the seminal work in [9]. It
was popularized in Graph Convolution Networks (GCNs) [10], where
the authors approximate the spectral representation of convolution
over the irregular graph structure [11], offering a simplified mes-
sage passing (MP) view. The latter yields a spatial-based description
which generalizes to Message Passing Neural Networks [12]. The
Transformer architecture [13] introduced the attention mechanism
acrosss sequence elements, facilitating the identification of latent, po-
tentially long-range, interactions. In Graph Attention networks [14],
it is suggested to learn attention weights for the edges of the input
graph. The multi-head attention module in Transformers was general-
ized and ported for graph learning, resulting in an early instance of
Graph Transformer architecture in [15]; this model hardwires a strong
inductive bias constraining attention to known neighbor nodes. In
Graphormer [16], the GT architecture was extended with implicit, de-
tailed encoding of structure and attention to non-adjacent vertices; in
[17] specialized edge channels were added to allow explicit learning
of pairwise structural information.

One of the key advantages of QML is its ability to generate expo-
nentially large quantum states for feature representation [18]. QML
computations can be organized in stages (pre-processing, parameter-
ized quantum circuit (PQC), post-processing) [19] that successfully
transform the input quantum state and measure at the end; PQCs are
tunable and are the direct analogues of classic neural networks (NNs).
Alternative methods for unsupervised QML are studied in [20]. For
graph learning in particular - see [21] for a survey - [22] introduce
recurrent and convolutional architecture variants. A simple quantum
GCN architecture is proposed and simulated in [23]. In [24] quantum
GNNs that exhibit equivariance under permutations of the adjacency
matrix are explored; the idea of sampling graphs for training quantum
GCNs in order to manage the limited qubit count of current QPUs
is investigated in [25]. BERT is a Transformer model and in [26]
they replace some layers of its decoder by a quantum temporal con-
volution learning framework. A quantum transformer is described
and simulated in [27] following the evaluation of a quantum LSTM
architecture.

3. QUANTUM GRAPH TRANSFORMER ARCHITECTURE

In this section, we describe our proposed Quantum Graph Trans-
former (QGT) architecture, also outlined and compared to Graph
Transformers (GTs) in Figure 1. In a nutshell, our QGT architec-
ture builds on top of GT. QGT encodes the graph structure with a
circuit; in comparison, GT uses a PE vector per node for this purpose.
Similarly, all-to-all message passing in GTs is mapped to another
quantum circuit with parametric gates and clique connectivity in QGT
architecture. Next, we describe the main idea behind GTs, followed
by details on their implementation in quantum computers.

3.1. Graph Transformers and Attention

The following discussion assumes a GT architecture similar to the
ones in [15, 16, 17]. Consider now an undirected, unweighted graph
G = (V,E) of n nodes, where V = {1, . . . , n} denotes the set
of vertices and E = {(i, j)|i, j ∈ V } denotes the set of edges,
respectively. The connectivity information of G can be represented

via an adjacency matrix A ∈ Rn×n where Aij = 1 iff (i, j) ∈ E,
and zero otherwise.

Let now each vertex i of G be associated with an encoding vector
xi ∈ Rd. Such encodings can be initially constructed by composing
embedded graph properties and node feature vectors, and can be orga-
nized in a matrix form where xi denotes the ith row of the encoding
matrix X ∈ Rn×d. The main premise behind Graph Transformers
is to perform message passing of node encodings by assuming an
all-to-all connectivity between the entities exchanging encodings, i.e.,
the vertices of G. These node encodings are then transformed by a
weight matrix, where the individual weight between any pair (i, j) is
decided by the similarity of their transformed encodings; a process
referred to as attention between nodes i and j. The similarity function
is chosen to be a normalized dot product. Thus, the GT adopts the
attention head in standard Transformers and updates the encodings of
each head at each layer as

X← softmax

(
Q ·K⊤
√
d

)
V (1)

where query, key and value vectors are the transformed encoding
vectors organized as rows in the respective matrices Q = XWQ, K =
XWK , and V = XWV , where the weight matrices WQ,WK ,WV

are learned during training.
A careful look at (1) indicates that GTs implicitly replace the adja-

cency matrix A by the dense matrix softmax
(

Q·K⊤
√

d

)
. This replace-

ment gives GTs the flexibility to learn latent connections between
graph nodes that are not reflected in the adjacency structure (global
self-attention). This is in contrast to GNNs which can perform mes-
sage passing only with their immediate neighbors, as dictated by the
graph connectivity. For example, GCNs update the encoding matrix
via the matrix multiplications X← σ(D̃−1/2ÃD̃−1/2XW), where
Ã = A + I, σ(·) denotes the sigmoid function, and W ∈ Rd×d

are learnable weights [10]. Thus, in contrast to GTs, exchanging
information between vertices with long distances requires several
GNN/GCN updates.

While GTs can benefit from learning latent connectivity patterns
which are not dictated by A, generally it is still beneficial to try and
preserve some form of information regarding the connectivity of G.
GTs can invariably integrate such information through a positional
encoding (PE) scheme, where vertices are enriched with vectors
denoting their position within the graph structure In [28] a number of
PEs are explored; for undirected graphs, a linear transformation of
Laplacian encoding is a common PE, where each node is assigned
the corresponding row of the top eigenvector matrix of its graph
Laplacian [15]. The PE vector pi for node i is added to its encoding
and the sum xi + pi serves as the final input to GT.

Next we describe how graph structure, PEs and message passing
are realized in the quantum context.

3.2. Quantum GT Representations

It is evident that GT features two important and seemingly counter-
acting requirements. On the one hand it should facilitate all-to-all
interactions of its nodes, in order to learn new edges, which means
“forgetting” the actual graph connections. On the other hand, pre-
serving information of the original graph structure is important since
the adjacency matrix is already available. Indeed, GTs meet the first
requirement by the global self attention in Equation 1, which allows
any two nodes to interact. The second requirement is then fulfilled
by PE, which represents an encoding of the whole graph. Given the
above discussion, we argue that a QGT can be built as follows:



1. The structure of the graph is represented via an encoding
quantum circuit which obeys the edge connectivity.

2. All-to-all node interactions with learnable weights are rep-
resented by a variational quantum circuit that connects all
possible node pairs.

Positional Encoding
PE(G)

Encoding Quantum Circuit
Enc(G)

Variational Quantum Circuit
V(θ)

Graph G

Graph Transformer

Quantum
Graph Transformer

Global Self-Attention Head
Att(W)

Fig. 1: GT vs QGT architecture.

Encoding Quantum Circuit In this circuit, the Hadamard gate is
applied to the input qubits which are assumed prepared in the |0⟩
state producing the superposition state |+⟩ = 1√

2
(|0⟩+ |1⟩) (com-

putation basis change). Then controlled-Z gates are applied between
qubits representing nodes that are connected in the graph. In the
computational basis, this gate flips the phase of the target qubit if the
control qubit is in the |1⟩ state. The output quantum graph state [8]
serves as the representation of the given graph.
Variational Quantum Circuit This is a PQC which assumes all-to-
all connectivity between qubits 1. Note that a connection between
two nodes is implemented through a controlled-X gate between two
qubits. In the computational basis, this gate flips the target qubit if
the control qubit is in the |1⟩ state. In this sense it is similar to a
classical XOR gate. The learnable entities, akin to weight matrices,
are represented by the angles of rotational gates around the Y axis:
RY (θ) = exp(−i θ

2
Y ). We allow two series of such weight-carrying

rotational gates, one at each of the input and output sides of this
circuit for a total of 2n learnable parameters.
Figure 2 includes realizations of the two circuits comprising QGT for
graphs with n = 6 nodes.

Fig. 2: An example graph for n = 6 (a), its encoding circuit (b) and
the variational circuit (c). (b) and (c) are connected. Measurement
circuits are assumed immediately after (c).

4. EXPERIMENTS

4.1. Datasets

We generate a graph dataset consisting of k undirected, connected
graphs Gr(Vr, Er), r = 1, . . . , k, and assosiated binary class labels
lr ∈ {0, 1}. A graph is assigned a label equal to one if it contains

1RealAmplitudes: https://qiskit.org/documentation/
stubs/qiskit.circuit.library.RealAmplitudes.html

QPU codename Initial AP Learnt AP

ibm oslo 0.624 ± 0.149 0.984 ± 0.021
ibm nairobi 0.588 ± 0.055 0.981 ± 0.019
ibmq manila 0.533 ± 0.087 0.976 ± 0.023
ibmq quito 0.573 ± 0.067 0.973 ± 0.020
ibmq lima 0.604 ± 0.109 0.973 ± 0.017

Table 1: Average precision scores (n = 5).

a 3-clique, i.e., a subgraph of size three where all three vertices are
connected to each other. Similarly, a graph is assigned a label equal
to zero if it contains no triangles. Our dataset is formed by generating
connected Watts–Strogatz small-world graphs, where the number n
of vertices is kept fixed. Throughout our experiments we consider
k = 20 and n ∈ {5, 6}; a snapshot of the generated graphs for the
case n = 6 is visualized in Figure 4.

4.2. Experimental Setup and Results

The measurement of the output state results in a vector of 2n entries,
where the jth entry denotes the probability to land to the correspond-
ing configuration. An output configuration consists of a binary string
label (e.g., ’100101’ for n = 6). Note that we choose to compute
the parity of this label (being either 0 or 1) and agree on accumu-
lating its probability on class label 0 or 1. So the probabilities of
all output configurations with parity 0 are added together and their
sum is considered to be the probability of getting classification label
0 (i.e., no triangles in the input graph). For a given graph and set
of parameters, we compute the negative log loss for the predicted
classification probabilities against the true classification label. We
average these (binary cross entropy) loss terms over all graphs and
true classification labels of our dataset: this is the value of our loss
function for the given parameters. In order to learn parameters that
minimize the loss function we leverage AMSGRAD[29], a variant
of the Adam optimizer [30], using learning rate η = 10−2. During
training we record the evolution of training loss across each iteration.
At the end of the training phase, we compute the average precision
(AP) score for the initial and learnt (“optimized”) parameters in our
variational circuit. We repeat the training phase 5 times, each with a
different seed; the variational circuit is initialized with zero angles in
all cases. For graphs with n = 6 nodes, AP score improves dramati-
cally from 0.330±0.024 to 0.770±0.079 demonstrating the learning
capability of our quantum circuit architecture. Figure 5 demonstrates
the evolution of training loss across different experiment instances.

We investigate the robustness of learnt parameters across a range
of 5- and 7- qubit devices,with codenames repectively in the sets
ibmq (manila|quito|lima) and ibm (oslo|nairobi).
Figure 6 illustrates the gate maps of the latter devices in the order
they appear in the text. We generate graph datasets for n = 5
nodes, in order to later enable experiments also with the 5-qubit
machine configurations and trace the training of QGT model. AP
score improves from 0.440 ± 0.037 to 0.994 ± 0.008, confirming
the learning efficacy of our approach over the new dataset collection.
We then import the coupling map, noise model and basis gates for
each of the QPUs and implement QGT circuits. More specifically, the
variational circuit in QGT is populated with (i) the initial conditions
(zero rotation angles) and (ii) the rotation angles learnt as in the
trained model for all QPU configurations; AP scores are computed
in both cases. For sampling purposes, each circuit is repeated 1,024
times (number of shots). Table 1 summarizes our findings.



Fig. 3: Steps in the proposed QGT architecture for processing an example graph of n = 3 nodes: The input graph, here a 3-clique (1), is used
to build the encoding circuit (leftmost circuit). Then the base state |0⟩⊗3 is prepared and fed into the circuit (2) producing the encoding state
(3). This is transformed by the variational circuit (4) to yield the final output state (5). Here we assume θ = π/4 for all 6 rotation angles in the
variational circuit; bar graphs of the real part of state density matrices Re(ρ) are shown.
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Fig. 4: Snapshot of graphs.

Essentially, we transfer (copy) parameters learnt in training QGT
over an idealized and fast simulator in order to calibrate the QGT
architecture to be used for inference over real device setups. The
robustness of the relative improvements demonstrates that this train-
ing/inference pattern is effective and computationally attractive for
our proposed QGT.

5. CONCLUDING REMARKS

In this paper we presented a QGT architecture for the task of graph
classification. The proposed architecture performs graph positional
encoding via inputting the information of the adjacency matrix in a
quantum circuit. In addition, an attention mechanism, i.e., all-to-all
node interactions, is implemented via a trainable variational quantum
circuit. Aiming at simplicity and minimal parameters to learn, our
variational circuit uses a single layer of two-qubit entanglement and
fixed-type rotation gates leading to quantum states with real ampli-
tudes. We evaluated the learning efficacy of the proposed QGT for the
task of graph classification where the dataset consists of small-world
graphs and the goal is to identify graphs which contain at least one
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Fig. 5: Training loss.
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Fig. 6: 5- and 7- qubit devices.

triangle. Our experiments confirm the effectiveness of learning varia-
tional circuit parameters in QPU device configurations for inference
purposes.

As part of future work, we plan to study the replacement of
single-layer, two-qubit entanglement with multiple-layer, multiple-
qubit entanglement circuit configurations with rotation gates from
richer unitary groups. Tracing the relative changes in rotation angle
vectors as graph edges get encoded, or as entangling connections are
removed, can help to translate global self-attention as rotations in
the quantum context. The trained QGT model can then encode and
map a graph of n nodes to a quantum state of 2n complex numbers.
For graph-level tasks, this is an exponentially richer representation
than the d real numbers (O(1)) from typical pooling operations on
top of the n, d-dimensional, node encodings learnt during typical GT
training. This can lead to major advances with potentially important
practical applications for n in the order of a few tens or hundreds
[31].
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