
Matrix Resolvent Eigenembeddings for
Dynamic Graphs

Vassilis Kalantzis and Panagiotis Traganitis

May 2023

EPrint ID: 2023.2

IBM Research
Thomas J. Watson Research Center

Preprints available from:

https://researcher.watson.ibm.com/researcher/view.php?person=ibm-vkal

MATRIX RESOLVENT EIGENEMBEDDINGS FOR DYNAMIC GRAPHS

Vasileios Kalantzis⋆ Panagiotis A. Traganitis†

⋆ IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA
†Dept. of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA

ABSTRACT

Eigenvector embeddings have been widely used to study graph prop-
erties in signal processing, mining, and learning tasks. However, if a
graph is changing dynamically, these embeddings have to be recom-
puted. In this work we introduce a novel matrix resolvent expansion-
based projection scheme to update eigenvector embeddings of dy-
namic graphs. The proposed method can tackle graph updates where
both new vertices and edges are added, and its potential is illustrated
via numerical tests on real data.

Index Terms— Eigenvector, Embedding, Graph, Dynamic, Ma-
trix Resolvent

1. INTRODUCTION

Graphs are mathematical constructs that are used to succinctly de-
scribe complex systems or networks, such as power, social and brain
networks to name a few. Due to their central role in network science
a plethora of tools have been developed to characterize graph prop-
erties and perform data mining and machine learning tasks. Multiple
state-of-the-art approaches that describe properties of a graph or net-
work, or perform learning tasks rely on so-called embeddings, that
is, vector representations of the vertices of a given graph. Of particu-
lar interest in this paper, are eigenvector embeddings (termed hence-
forth eigenembeddings) of graphs, that, as the name suggests, are de-
rived from the eigenvectors of adjacency matrices. Notable applica-
tions of eigenembeddings include node or vertex centrality [1, 2, 3]
and spectral clustering [4, 5] among others. Variants of eigenvector
centrality include PageRank [6], exponential subgraph centrality [7]
and Katz centrality [8].

Despite the popularity of these eigenvector embeddings, if a
change occurs in the graph, i.e., a set of edges or vertices is ei-
ther added or removed, these embeddings have to be computed from
scratch, leading to potentially intractable computational costs for
graphs that change frequently. Thus, methods that can rapidly update
the eigenvector embeddings of dynamic graphs without performing
a full eigendecomposition are well motivated.

A perturbation theory based algorithm was proposed in [9] to
track the top-k eigenpairs of a dynamic graph. Similar approaches
were also considered in [10, 11]. For spectral clustering of dynamic
graphs [12] introduced a compressive method, while [13] used a per-
turbation theory approach. Most similar to this work, an incremental
projection-based SVD update method was advocated in [14].

In this work, we consider a projection-based approach to update
the eigenembeddings of evolving graphs where new vertices are con-
stantly added to the system. Compared to the prior art, the proposed
method approximates the top-k eigenpairs of the updated adjacency

Emails: vkal@ibm.com, traganit@msu.edu

matrix via a Rayleigh-Ritz projection onto a subspace formed by ma-
trix resolvent expansions. Similar techniques have been considered
for the update of top-k singular value decompositions [15], how-
ever this is the first time that matrix resolvent expansions are consid-
ered for eigenvalue problems; and in particular those stemming from
tasks in graph analysis.
Notation: Lowercase bold letters, x, denote vectors, uppercase bold
letters, X, represent matrices, and calligraphic uppercase letters, X ,
stand for sets. The (i, j)-th entry of matrix X is denoted by [X]ij .
Ran(X) and Rank(X) denote the rangespace and rank of X, re-
spectively, and |X | denotes the cardinality of set X . ‘⊕’ denotes
the direct sum between two subspaces, and I and 0 the identity and
all-zeroes matrices of appropriate dimension, respectively.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider at time-step ’t’ a graph Gt := {Vt, Et}, where Vt, Et de-
note its vertex (or node) and edge sets respectively, and let nt := |Vt|
denote the number of vertices. Associated with Gt is a nt × nt ad-
jacency matrix At, that encodes the connectivity between vertices
in Vt, i.e., [At]i,j = 1 if (i, j) ∈ Et, and [At]i,j = 0 otherwise.
Let {(λt,i,xt,i)}ki=1 denote the k leading eigenpairs of At, with
λt,i being the i-th eigenvalue and xt,i the corresponding eigenvector,
where λt,1 ≥ . . . ≥ λt,k, and also, define Xt := [xt,1, . . . ,xt,k]
and λt := [λt,1, . . . , λt,k].

In this work we focus exclusively in scenarios where at time-
step ‘t+1’, the graph Gt is updated to graph Gt+1 := {Vt+1, Et+1},
under the constraint Gt ⊂ Gt+1, i.e., the graph Gt is an induced
subgraph of Gt+1, thus Vt ⊆ Vt+1 and Et ⊆ Et+1. In addition,
nt+1 := |Vt+1| = nt + st+1, where st+1 is the number of newly
added vertices. Since Gt is an induced subgraph of Gt+1, At is a
leading principal submatrix of the adjacency matrix At+1 associated
with the graph Gt+1. Specifically, the adjacency matrix at time-step
‘t+ 1’ can be written as

At+1 =

[
At At,t+1

A⊤
t,t+1 At+1,t+1

]
, (1)

where At,t+1 ∈ Rnt×st+1 encodes the coupling between the exist-
ing nt vertices and the newly added st+1 vertices, and At+1,t+1 ∈
Rst+1×st+1 captures the connectivity between the newly added st+1

vertices. Our objective is to update the k leading eigenpairs of At

to the k leading eigenpairs of At+1, for t = 1, . . . , T − 1, with T
denoting the maximum number of graph updates.

3. EIGENPAIRS OF EVOLVING GRAPHS

To develop an algorithm for updating the eigenvalues and eigenvec-
tors of At+1 we will rely on the so-called Rayleigh-Ritz (RR) ap-
proximation procedure [16]. Consider an orthonormal basis matrix

Zt+1 and let {(τt+1,i,ht+1,i)}ki=1, denote the k leading eigenpairs
of the matrix Z⊤

t+1At+1Zt+1, where τt+1,1 ≥ τt+1,2 ≥ . . . ≥
τt+1,k. Then the i-th leading eigenpair (λt+1,i,xt+1,i) of At+1 can
be approximated by the i-th leading Ritz pair (τt+1,i,Zt+1ht+1,i).
In fact, when xt+1,i ∈ Ran(Zt+1), λt+1,i = τt+1,i and xt+1,k =
Zt+1ht+1,i [17, Section 11]. Thus proper design of Zt+1 will en-
able efficient and accurate computation of the leading eigenpairs of
At+1. A summary of the proposed framework is listed as Alg. 1,
and the ensuing sections showcase how to construct such a Zt+1

from the leading eigenpairs of At.

Algorithm 1 Eigen-update algorithm.

1: Input: A1 ∈ Rn1×n1 , k ∈ N
2: Output: XT , ΛT

3: ▷ Set t← 1 and compute (Xt,λt)
4: do
5: ▷ Receive At,t+1, At+1,t+1

6: ▷ Build projection matrix Zt+1

7: ▷ Compute the k leading Ritz pairs (Xt+1,λt+1) of At+1

8: ▷ Set At+1,t+1 ← At+1, and t← t+ 1
9: while there exist graph updates

3.1. An exact subspace when Rank(At) = k

Since any eigenvector x associated with a nonzero eigenvalue λ of
the matrix At+1 must lie in its range [16], the optimal Zt+1 is a ba-
sis of Ran(At+1). However, computing such a basis at every graph
update is impractical since Rank (At+1) may be too large. Never-
theless, as the next proposition will show, one can easily construct
an optimal Zt+1 from Xt, under the assumption Rank(At) = k.

Proposition 1. Let At+1 be defined as in (1), assume Rank(At) =
k, and consider an orthonormal matrix Qt+1 that satisfies
Ran(Qt+1) = Ran((I−XtX

⊤
t)At,t+1). Then

Ran(At+1) ⊆ Ran

([
Xt Qt+1 0

0 I

])
. (2)

Proof. The matrix At+1 can be written as

At+1 =

[
At 0
0 0

]
+

[
0 At,t+1

A⊤
t,t+1 0

]
+

[
0 0
0 At+1,t+1

]
. (3)

By definition, Ran(At+1) lies in the union of the range spaces of
the three matrices on the right-hand side in (3). Since Rank(At) =
k, it follows that Ran(At) = Ran(Xt). Moreover, notice that
Ran(At+1,t+1) ⊆ Ran(I) and

Ran

([
0 At,t+1

A⊤
t,t+1 0

])
⊆ Ran

([
At,t+1

0

])
⊕ Ran

([
0
I

])
.

Finally, note that Ran ([Xt, At,t+1]) ≡ Ran ([Xt, Qt+1]).

Prop. 1 suggests that when Rank(At) = k, the exact k leading
eigenpairs of At+1 can be computed via a RR projection [16] onto
the orthonormal basis

Zt+1 =

[
Xt Qt+1 0

0 I

]
, (4)

where Qt+1 is constructed as an orthonormal basis of (I−XtX
⊤
t)At,t+1,

using e.g., the Gram-Schmidt process [16]. The projection matrix in
(4) has also appeared in the context of updating the truncated SVD

of matrices in Latent Semantic Indexing [18, 15], as well as the
eigen-update of graph Laplacians in spectral clustering applications
[14]. In the latter reference, as well as in [15], it is also discussed

to set Zt+1 =

[
Xt 0
0 I

]
, i.e., to ignore the off-diagonal coupling.

However, the approximate eigenpairs produced by such a subspace
are typically not very accurate.

When Rank(At) > k, the Ritz values produced by projection
with the aforementioned Zt+1 will not match those of At+1 exactly,
however a standard application of the Bauer-Fike theorem reveals
that the k leading Ritz values are within a λt,k+1 distance of the true
eigenvalues of At+1 [19]. Thus, when At is approximately rank-k,
the basis in (4) can still provide a good approximation. Nevertheless,
graph adjacency matrices are typically sparse and not low-rank.

3.2. Matrix resolvent expansions

In this section we consider an approach based on domain decompo-
sition [20] which does not assume any specific rank for matrix At+1

and is appropriate even when the dominant eigenvalues of At+1 are
not well-separated. Consider an eigenpair (λ,x) of At+1, parti-
tioned as x = [u⊤,y⊤]⊤,u ∈ Rnt , y ∈ Rst+1 . Then, from (1) we
have, [

At − λI At,t+1

A⊤
t,t+1 At+1,t+1 − λI

] [
u
y

]
= 0 (5)

from which it follows u = (λI−At)
−1At,t+1y, and thus

x =

[
u
y

]
∈ Ran

([
(λI−At)

−1At,t+1 0
0 I

])
.

The above expression suggests that we can compute the exact k
eigenpairs of At+1 if Ran(Zt+1) is equal to

Ran

([
Tt(λt+1,1) . . . Tt(λt+1,k) 0

0 I

])
, (6)

where for any λ /∈ {λt+1,i}nt+st+1

i=1 ,

Tt(λ) := (λI−At)
−1At,t+1.

The range in (6) can be brought into a form similar to (4), by restrict-
ing Tt(λ) onto the orthogonal complement of Ran (Xt), hereby
defining the deflated matrix-valued function

Ft(λ) = (I−XtX
⊤
t)Tt(λ) =

nt∑

j=k+1

xt,j(x
⊤
t,jAt,t+1)

λ− λt,j
. (7)

Computing a basis for such a range is generally impractical. How-
ever, note that the contribution of each rank-1 term xt,jx

⊤
t,jAt,t+1

in (7) is inversely proportional to the difference λ−λt,j , thus, when
λt+1,i ≫ λt,j , j > k, Ft(λt+1,i) will not vary much regardless of
the index i. Specifically, for 1 ≤ i, q ≤ k the difference

Ft(λt+1,i)− Ft(λt+1,q) =

nt∑

j=k+1

dt+1,q
t+1,ixt,j(x

⊤
t,jAt,t+1)

dt+1,i
t,j dt+1,q

t,j

,

where dt+1,q
t,i := λt+1,q − λt,i, depends on a) the magnitude of

dt+1,q
t+1,i ; and b) the distance of λt+1,q and λt+1,i from the largest non-

deflated eigenvalue of At, λt,k+1. Therefore, it appears reasonable
to maintain only the leading matrix-valued function Ft(λt+1,1), in
which case the projection subspace becomes

Ran

([
Xt Ft(λt+1,1) 0

0 I

])
. (8)

To illustrate the advantages of the matrix resolvent-based projec-
tion consider the first nt entries of the eigenvector xt+1,i =
[u⊤

t+1,i,y
⊤
t+1,i]

⊤, and solve for the nt × 1 subvector ut+1,i =

Tt(λt+1,i)yt+1,i ∈ Ran
(
[Xt, (I−XtX

⊤
t)Tt(λt+1,i)]

)
. The

subspace in (8) replaces the ideal subspace with the approxima-
tion Ran

(
[Xt, (I−XtX

⊤
t)(λt+1,1I−At)

−1At,t+1]
)
. On the

other hand, the subspace in (2) approximates the ideal subspace by
Ran

(
[Xt, (I−XtX

⊤
t)At,t+1]

)
. Thus, the approximation pro-

duced by (8) approximates (λt+1,iI−At)
−1 by (λt+1,1I−At)

−1

while (2) replaces (λt+1,iI−At)
−1 with the identity matrix.

3.3. Truncation of Ft(λt+1,1) via randomized SVD

Computing an orthonormal basis of the matrix Ft(λt+1,1) re-
quires the solution of st+1 linear systems of the form (λt+1,1I −
At)yt+1,,1,j = (I − XtX

⊤
t)At,t+1ej , where yt+1,1,j is the j-th

entry of yt+1,1, and ej denotes the j-th column of the st+1 × st+1

identity matrix, which may be impractical for large st+1. More-
over, as the next proposition will show, the matrix At,t+1 resulting
from typical graph updates, and consequently Ft(λt+1,1), might be
low-rank.

Proposition 2. Let Ct+1 = Vt+1\Vt denote the st+1 added vertices
at time-step ‘t+1’, rt+1 denote the number of vertices of Gt that are
connected to Ct+1, and gt+1 denote the number of vertices of Ct+1

that are connected to Gt. Then, Rank(At,t+1) ≤ min(rt+1, gt+1).

Proof. [At,t+1]i,j is nonzero if and only if the i-th vertex of Gt is
connected to the j-th vertex of the set Ct+1. Thus, At,t+1 has at
most rt+1 nonzero rows and gt+1 nonzero columns.

Prop. 2 suggests that the true rank of At,t+1 can be much
smaller than min(nt, st+1), when there exist highly repetitive end-
points of the edges between current and newly added vertices,
prompting us to seek an orthonormal basis of a low-rank approxima-
tion of Ft(λt+1,1). Here, we approximate the l ∈ N leading singular
triplets of Ft(λt+1,1) via randomized SVD (RSVD) [21]. Given
a st+1 × (l + p) matrix Ωt+1 of identically and independently
distributed entries, where p ∈ N is an oversampling parameter,
RSVD first computes the matrix product Wt+1 = Ft(λt+1,1)Ωt+1

by solving l + p deflated linear systems with the coefficient
matrix λt+1,1I − At. Let Dt+1 denote an orthonormal ba-
sis of Ran(Wt+1), and consider the singular value decomposi-
tion D⊤

t+1Ft(λt+1,1) = ÛΣ̂V̂⊤. The rank-l approximation of
Ft(λt+1,1) is then equal to Dt+1ÛΣ̂V̂⊤.

In summary, Qt+1 in (4) is replaced by the orthonormal matrix
Rt+1 = Dt+1Û, leading to the projection matrix

Zt+1 =

[
Xt Rt+1 0

0 I

]
. (9)

The asymptotic computational complexity of RSVD is equal to the
sum of the following terms: a)O(nnz(At)(l+p)) (to form Wt+1),
b)O(nt(l+p)2) (to compute Dt+1), and c)O(ntl(l+p)) (to form
Rt+1).

The basis in (9) can be further truncated by replacing the lower-
right st+1 × st+1 identity matrix with the matrix Gt+1 formed by
the ℓ leading eigenvectors of At+1,t+1. The performance of this
approach will be evaluated in the next section.

Table 1. Summary of options to set Zt+1 and solve the Rayleigh-Ritz
eigenvalue problem.

Option Zt+1 RR cost

M1 [15, 14]

[
Xt 0

0 I

]
O((k + st+1)

3)

M2 [18, 14]

[
Xt Qt+1 0

0 I

]
O((k + 2st+1)

3)

M3

[
Xt Rt+1 0

0 I

]
O((k + l + st+1)

3)

M4

[
Xt Rt+1 0

0 Gt+1

]
O((k + l + ℓ)3)

4. NUMERICAL EXPERIMENTS

Our goal in this section is to: a) validate the accuracy of the approx-
imate k leading eigenpairs returned by Algorithm 1 after all graph
updates are complete, and b) benchmark the qualitative accuracy
achieved by the embeddings produced by Algorithm 1 in applica-
tions such as exponential and subgraph centrality.

All tests are conducted in MATLAB [22]. Table 1 summarizes
four different options to set Zt+1, and their respective asymptotic
complexity required to solve the Rayleigh-Ritz eigenvalue problem.
Options M1 and M2 have been used in [18, 14, 15] to update eigen-
embeddings of dynamic datasets; option M2 is outlined in Sec. 3.1.
Option M3 refers to the method introduced in this work, outlined
in Secs. 3.2 and 3.3, and option M4 refers to the same method but
with its basis further truncated, using the leading ℓ eigenvectors of
At+1,t+1, as explained at the end of Sec. 3.3. Note that the asymp-
totic complexity of computing the embeddings at each time step is
O(n2

tk). Throughout all experiments we set the target rank l and
the oversampling parameter p of RSVD all equal to k. Four graphs
from the University of Florida Sparse Matrix collection [23] are
considered in this paper: a) wing nodal, a Walshaw graph, with
n = 10, 937 vertices and m = 150, 976 edges, b) socfb-MIT, an
MIT social friendship Facebook network, with n = 6, 400 vertices
and m = 251, 200 edges, c) ego-facebook, a dataset modelling
’circles’ (or ’friends lists’) from a Facebook users’ survey, with n =
4, 039 vertices and m = 88, 234 edges, and d) USpowerGrid, a
graph modelling the topology of the Western States Power Grid of
the US, with n = 4, 941 vertices and m = 13, 188 edges.

To emulate dynamic graphs, we partition the vertices of each
graph randomly into T = 20 subgraphs of similar sizes. Starting
from a randomly selected initial subgraph, at each time-step the ver-
tices and edges associated with one of the remaining subgraphs are
added, until the entire graph is parsed. Fig. 1 plots the relative eigen-
value errors |λT,i − λi|, i = 1, . . . , k and corresponding residual
norms ∥(A− λT,iI)xT,i∥2 of the approximate eigenpairs produced
by Alg. 1 for the graphs considered, with A denoting the adjacency
matrix for the full graph and λi denoting its i-th eigenvalue. Op-
tions ‘M2’ and ‘M3’ are the most accurate, followed by ‘M4’ and
‘M1’, which, however, are the options with the fewest columns in
Zt+1. Moreover, from Table 1, the asymptotic complexity of the
Rayleigh-Ritz projection in ’M4’ does not depend on the graph up-
date size st+1. Thus, for large graph updates, ’M4’ might be the
fastest approach.

Finally, we consider a graph top-N vertex recommendation task
based on (exponential) subgraph centrality [3]. Recommendation is
facilitated by identifying the vertices corresponding to the N ∈ N

2 4 6 8 10

10
-2

10
-1

10
0

2 4 6 8 10

10
-4

10
-2

10
0

2 4 6 8 10

10
-4

10
-2

10
0

2 4 6 8 10

10
-1

10
0

2 4 6 8 10

10
-2

10
-1

10
0

2 4 6 8 10

10
-2

10
-1

10
0

Fig. 1. Top row: Relative Eigenvalue error. Bottom row: Residual norm. Index denotes the eigenvalue/eigenvector index.

2 4 6 8 10
0.7

0.8

0.9

1

1.1

1.2

2 4 6 8 10
0.7

0.8

0.9

1

1.1

1.2

Fig. 2. Left: Subgraph centrality. Right: Exponential subgraph cen-
trality for USPowerGrid

largest indices of a) the diagonal of eA (subgraph centrality), and
b) the product eA1, where 1 denotes the vector of all ones (ex-
ponential subgraph centrality). In both cases, Alg. 1 is used to
approximate eA by Xte

ΛtX⊤
t . Figure 2 plots the 11-point aver-

age interpolated precision [24] of the top-N graph recommendation
achieved when k = {2, 4, 6, 8, 10} and N = ⌊n/100⌋, for the graph
USpowerGrid. In both cases, the ’M3’ resolvent-based approach
led to higher average precision.

5. CONCLUSION

This contribution presented a Rayleigh-Ritz framework to update
eigenembeddings of evolving graphs. Several options to update the
projection subspace were presented, including a novel scheme based
on matrix resolvent expansions which does not impose any con-
straints on the rank of the adjacency matrix and exhibits improved
accuracy compared to previous approaches.

Future work includes the study of the proposed framework for
other graph analytic tasks such as spectral graph clustering or tri-
angle counting. Another task of interest is the update of the ini-
tial spectral embeddings used in Graph Neural Networks subject to
graph updates. Future work will also feature vertex and edge dele-
tions, which occur in many real-world applications such as social
network analysis.

6. REFERENCES

[1] U. Kang, S. Papadimitriou, J. Sun, and H. Tong, “Centrali-
ties in large networks: Algorithms and observations,” in Pro-
ceedings of the 2011 SIAM international conference on data
mining, 2011, pp. 119–130.

[2] D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D.
Tenfelde-Podehl, and O. Zlotowski, “Centrality indices,” in
Network analysis, pp. 16–61. Springer, 2005.

[3] M. Benzi, E. Estrada, and C. Klymko, “Ranking hubs and
authorities using matrix functions,” Linear Algebra and its Ap-
plications, vol. 438, no. 5, pp. 2447–2474, 2013.

[4] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics
and Computing, vol. 17, no. 4, pp. 395–416, 2007.

[5] B. Baingana, P. A. Traganitis, G. B. Giannakis, and G. Mateos,
“Big data analytics for social networks,” Graph-Based Social
Media Analysis, vol. 39, pp. 293, 2016.

[6] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageR-
ank citation ranking: Bringing order to the web.,” Tech. Rep.,
Stanford InfoLab, 1999.

[7] E. Estrada and J. A. Rodriguez-Velazquez, “Subgraph central-
ity in complex networks,” Physical Review E, vol. 71, no. 5,
pp. 056103, 2005.

[8] L. Katz, “A new status index derived from sociometric analy-
sis,” Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[9] C. Chen and H. Tong, “Fast eigen-functions tracking on dy-
namic graphs,” in Proceedings of the 2015 SIAM international
conference on data mining. SIAM, 2015, pp. 559–567.

[10] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “At-
tributed network embedding for learning in a dynamic envi-
ronment,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, New York, NY,
USA, 2017, p. 387–396.

[11] D. Zhu, P. Cui, Z. Zhang, J. Pei, and W. Zhu, “High-order
proximity preserved embedding for dynamic networks,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no.
11, pp. 2134–2144, 2018.

[12] L. Martin, A. Loukas, and P. Vandergheynst, “Fast approxi-
mate spectral clustering for dynamic networks,” in Proceed-
ings of the 35th International Conference on Machine Learn-

ing, J. Dy and A. Krause, Eds., 10–15 Jul 2018, vol. 80 of
Proceedings of Machine Learning Research, pp. 3423–3432.

[13] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang, “Incre-
mental spectral clustering by efficiently updating the eigen-
system,” Pattern Recognition, vol. 43, no. 1, pp. 113–127,
2010.

[14] C. Dhanjal, R. Gaudel, and S. Clémençon, “Efficient eigen-
updating for spectral graph clustering,” Neurocomputing, vol.
131, pp. 440–452, 2014.

[15] V. Kalantzis, G. Kollias, S. Ubaru, A. N. Nikolakopoulos, L.
Horesh, and K. Clarkson, “Projection techniques to update the
truncated SVD of evolving matrices with applications,” in In-
ternational Conference on Machine Learning, 2021, pp. 5236–
5246.

[16] G. H. Golub and C. F. Van Loan, Matrix computations, JHU
press, 2013.

[17] B. N. Parlett, The symmetric eigenvalue problem, SIAM, 1998.
[18] H. Zha and H. D. Simon, “On updating problems in latent

semantic indexing,” SIAM Journal on Scientific Computing,
vol. 21, no. 2, pp. 782–791, 1999.

[19] Y. Saad, Numerical methods for large eigenvalue problems:
revised edition, SIAM, 2011.

[20] V. Kalantzis, Domain decomposition algorithms for the so-
lution of sparse symmetric generalized eigenvalue problems,
Ph.D. thesis, University of Minnesota, 2018.

[21] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure
with randomness: Probabilistic algorithms for constructing ap-
proximate matrix decompositions,” SIAM review, vol. 53, no.
2, pp. 217–288, 2011.

[22] MATLAB, version 9.11.0 (R2021b), The MathWorks Inc.,
Natick, Massachusetts, 2021.

[23] T. A. Davis and Y. Hu, “The University of Florida sparse ma-
trix collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec
2011.

[24] T. G. Kolda and D. P. O’leary, “A semidiscrete matrix decom-
position for latent semantic indexing information retrieval,”
ACM Transactions on Information Systems (TOIS), vol. 16, no.
4, pp. 322–346, 1998.

