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ABSTRACT

We present an algorithm to estimate the trace of symmetric ma-
trices that are available only via Matrix-Vector multiplication.
The proposed algorithm constructs a series of trace estimates
by applying the probing technique with an increasing number
of vectors. These estimates are then treated as a converging
sequence whose limit is the sought matrix trace, and we apply
Aitken’s ∆2 process to accelerate its convergence to the trace
limit. Numerical experiments performed on covariance matri-
ces demonstrate the competitiveness of the proposed scheme
versus probing and randomized trace estimators.

1. INTRODUCTION

Computing the sum of the diagonal elements (trace) of a n× n
symmetric matrix A is an important computational task that
arises in a wide range of scientific applications, including un-
certainty quantification, lattice quantum chromodynamics, net-
work theory, and protein folding, e.g., see [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11]. In addition, several machine learning applications
require the computation of the trace of covariance matrices.
For example, the Fréchet Inception Distance (FID), a perfor-
mance metric to evaluate the quality of Generalised Adversarial
Networks, requires the computation of the trace of sample co-
variance matrices associated with distributions of real and en-
gineered datasets [12, 13]. Similarly, the trace estimation of
precision matrices appears when fitting the Matérn covariance
model to a Gaussian process via maximum likelihood estima-
tion [14]. Finally, computing the trace of covariance matrices
allows the quantification of the total variance of the underlying
data-collection [1].

In this paper we focus on scenarios where A is implicitly-
defined i.e., A is not formed explicitly but we can compute
Matrix-Vector (MV) products of the form y = Az, z ∈ Rn.

For example, let A =
1

n
XXT denote the sample covariance

matrix associated with the matrix X containing n observed data
of dimension p. Forming the matrix A explicitly requires the
storage of n2 scalars and 2pn2 floating-point operations, which
becomes impractical for large data-collections. On the other
hand, we can compute MV products with A through computing
MV products with the matrices X and XT .

The simplest approach to compute the trace tr(A) of the
matrix A is to compute each individual diagonal entry individ-
ually, i.e., tr(A) =

∑j=n
j=1 eTj Aej , where ej ∈ Rn denotes
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the jth column of the n× n identity matrix. This approach re-
quires n MV products with matrix A and becomes impractical
for anything but very small matrix size n.

Instead, practical algorithms settle for an approximation of
the form tr(A) ≈ σ

∑j=k
j=1 z

T
j Azj , σ > 0, where the en-

tries of the n-dimensional vectors {zj}j=kj=1 are chosen either
randomly or deterministically. For example, when each entry
of zj is ±1 with equal probability (i.e., Rademacher vector)
and σ = 1/k, the above Monte Carlo (MC) trace estimator is
a minimum variance1 unbiased estimator of tr(A) [15], and

converges asO
(

1/
√
k
)

. Standard MC approaches do not take
under consideration any special properties of matrix A, e.g.,
decay in the magnitude of the off-diagonal entries. An alterna-
tive to random vectors is to set the vectors {zj}j=kj=1 as columns
of the Hadamard matrix of the appropriate size or as linear com-
binations of the n × n identity matrix. This choice of vectors
has the property that the error in the approximation of tr(A)
only comes from certain non-zero entries, e.g., those located on
diagonals which are multiple of k. We will refer to such proce-
dures as probing [16, 17]. A well-known limitation of probing
versus MC estimators is the discarding of all previous compu-
tational efforts every time a new approximation of tr(A) is
computed. This has been studied in [4, 9] where it was sug-
gested to use hierarchical probing.

The algorithm proposed in this paper alleviates the incre-
mental nature of probing by applying a series transformation
process. In particular, under the assumption that the estimates
χ0, χ1, . . ., produced by the probing trace estimator converge
(approximately) linearly to tr(A), we can treat the former as
part of a convergent sequence which we accelerate by trans-
forming it to another sequence which has the same limit (i.e.,
tr(A)), but converges to it at a super-linear rate. This is a series
acceleration problem, and the algorithm discussed in this pa-
per accelerates the sequence χ0, χ1, . . ., by applying Aitken’s
delta-squared (∆2) process [18, 19]. Aitken’s extrapolation
method has been considered previously in the context of esti-
mating the trace of the matrix inverse by extrapolating the pre-
diction of the moment xTA−1x [20]; see also [21]. Nonethe-
less, the latter work is quite different than the algorithm pro-
posed in this paper as we perform no moment extrapolation;
rather we apply Aitken’s ∆2 process to a sequence of trace es-
timates obtained by a probing trace estimator.

Without loss of generality, throughout the rest of this pa-
per we will assume that the size of matrix A satisfies n = 2j

for some j ∈ N. Lowercase bold letters, x, will denote vec-
tors, while uppercase bold letters, X, will represent matrices.

1Over the field of real random vectors.



Section 2 describes the basic procedure following by the prob-
ing technique. Section 3 improves the accuracy of the probing
trace estimator by Aitken’s extrapolation method. Section 4 il-
lustrates the proposed method on a model problem from uncer-
tainty quantification. Finally, Section 5 presents our concluding
remarks.

2. APPROXIMATING TR(A) BY PROBING

Definition 1. For any integer 0 ≤ i ≤ log2(n), define the
integer variable

ki = 2i,

where log2 denotes the binary logarithm. We then define the
approximation χi of tr(A):

χi =

j=ki∑

j=1

zTj Azj ,

where all entries of zj ∈ Rn are equal to zero except for those
indexed by (i − 1)ki + j, i = 1, . . . ,

n

ki
, which are equal to

one.

We will denote by Zki = [z1, . . . ,zki ] the matrix whose
jth column is equal to zj , j = 1, . . . , ki. For example, let
n = 4. The matrices Z1, Z2, and Z4, are equal to

Z1 =




1

1

1

1


 , Z2 =




1 0

0 1

1 0

0 1


 , andZ4 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 ,

respectively.
Let now the sum of the entries of the ηth super-diagonal of

A be denoted by εη =
p=n−η∑
p=1

Ap,η+p. The estimation χi of

tr(A) can be written as:

χi = tr(ZTkiAZki)

= tr(A) + 2 (εki + ε2ki + . . .)

= tr(A) +

j=(n/ki)−1∑

j=1

2εjki .

(1)

Therefore, the error in the approximation of the tr(A) by the
estimate χi =

∑j=ki
j=1 zTj Azj stems only from those hyper-

diagonals whose index is a multiple of the integer 2i. More-
over, the hyper-diagonals which contribute to the approxima-
tion error of the estimate χi are a super-set of those hyper-
diagonals which contribute to the approximation error of the
estimate χi+1.

Proposition 1. Let the entries of matrix A be finite and as-
sume that its off-diagonal entries have the same sign. Then, the
sequence χ0, χ1, . . ., converges monotonically to tr(A).

Proof. Since A has finite entries, the sequence χ0, χ1, . . ., is
bounded. Following (1), the hyper-diagonals which contribute

to the approximation error of the estimate χi are a super-set
of the hyper-diagonals which contribute to the approximation
error of the estimate χi+1. Since Zki has only non-negative
entries and the off-diagonal entries of A have the same sign, it
follows that the sequence χ0, χ1, . . ., is either non-increasing
or non-decreasing, and converges to tr(A).

Matrices whose off-diagonal entries satisfy the above prop-
erties can be found in our numerical experiments as well as
[5, 10, 22] and references therein.

The probing procedure is summarized in Algorithm 1. The
procedure terminates when the relative difference between the
two most recent trace approximations is below an acceptable
threshold ε ∈ R. Notice that Algorithm 1 terminates after at
most log2(n) iterations, i.e., χlog2(n)

is the exact trace since
Zn is equal to the n× n identity matrix. The probing estimate
χi of tr(A) requires the summation of ki scalar (dot) products
between zTj and yj = Azj , j = 1, . . . , ki. Assuming that
the probing trace estimator converges with χi as the latest esti-
mation of tr(A), Algorithm 1 requires 20 + 21 + . . . + 2i =
2i+1 − 1 MV products of the form y = Az, z ∈ Rn.

Algorithm 1 Probing trace estimator

1. Compute χ0 = 1TA1, where 1 ∈ Rn is the vector of all
ones. Set i = 0 and a tolerance ε ∈ (0, 1).
do

2. Set i = i+ 1, ki = 2i

3. Compute χi = tr(ZTkiAZki)
while |χi − χi−1| > εχi and i ≤ log2(n)

Following the above discussion, it becomes evident that
computing the probing estimate χi+1 requires as much work
as computing all2 previous i probing terms together. Therefore,
the computation of each progressive term becomes increasingly
more expensive. As a remedy, in the next section we study the
use of sequence acceleration techniques in order to reduce the
computational cost of Algorithm 1.

3. ACCELERATING PROBING TRACE ESTIMATORS
BY AITKEN’S ∆2 PROCESS

In this section we consider the application of a sequence ac-
celeration technique in order to accelerate the convergence rate
of probing matrix trace estimators. The idea behind sequence
acceleration techniques is to transform a slowly convergent se-
quence3 {tn}n∈N into a new sequence {t̂n}n∈N which con-
verges to the same limit faster than the original sequence [23].

The literature on sequence acceleration techniques spans
several centuries but research on the topic was revived dur-
ing the initial era of digital computers due to Wynn’s Epsilon
Method [24]. A survey of modern sequence acceleration tech-
niques can be found in [25]. Richardson’s extrapolation method

2A more efficient implementation is possible if partial MV products
are stored in memory.

3Note that {tn}n∈N can also be non-scalars, e.g., vectors, matrices,
or tensors.



[19] and Aitken’s ∆2 process [18] are among the most well-
known extrapolation-based methods used for accelerating the
rate of linearly converging sequences.

Definition 2. A convergent sequence {ti}∞i=0 converges lin-
early, with rate µ ∈ (0, 1), when

lim
i→∞

|ti+1 − t∗|
|ti − t∗|

= µ.

Unlike Richardson extrapolation, Aitken’s ∆2 process can
be applied even when the rate of convergence is unknown, since
the latter does not appear in the update of t̂i. For this reason, in
this paper we focus exclusively on Aitken’s ∆2 process.

Definition 3. Given a sequence {ti}∞i=0, Aitken’s ∆2 process
generates a new sequence {t̂i}∞i=0 such that

t̂i = ti − (ti+1 − ti)2
ti+2 − 2ti+1 + ti

= ti − (ti+1 − ti)2
(ti+2 − ti+1)− (ti+1 − ti)

.

Under the assumption that {ti}∞i=0 converges linearly to a limit
t∗ and that for i sufficiently large, (ti+1− t∗)(ti− t∗) > 0, the
sequence {t̂i}∞i=0, generated by Aitken’s ∆2 process converges
to t∗ faster in the sense that ([26, 27])

lim
i→∞

t̂i − t∗
ti − t∗

= 0.

Although Aitken’s ∆2 process does not generally con-
verges quadratically, we note that when the terms {ti}∞i=0

come from a fixed point procedure, i.e., ti+1 = f(ti) for some
function f : R→ R which converges to a fixed point, the con-
vergence rate can be shown to be quadratic [28]. This process
is known as Steffensen’s method.

The algorithm presented in this paper applies Aitken’s ∆2

process to the sequence formed by the estimates χ0, χ1, . . ., ob-
tained by Algorithm 1. Let now ki = 2i and i+ 1 ≤ log2(n).
The rate of convergence of the estimates {χi}i=log2(n)

i=0 is linear
with a rate µ ∈ (0, 1) if

|χi+1 − tr(A)|
|χi − tr(A)| =

∑j=(n/2ki)−1
j=1 ε2jki∑j=(n/ki)−1
j=1 εjki

= µ.

In practice, the sequence χ0, χ1, . . ., can be accelerated even
when the above ratios are only approximately equal.

Algorithm 2 Aitken’s ∆2 accelerated trace estimator

1. Set χ−1 = 0, χ0 = 1TA1, χ1 = tr(ZT2 AZ2), and
i = −1. Set a tolerance ε ∈ (0, 1).
do

2. Set i = i+ 1, ki+2 = 2i+2

3. Compute χi+2 = tr(ZTki+2
AZki+2)

4. Set χ̂i = χi − (χi+1 − χi)2
(χi+2 − χi+1)− (χi+1 − χi)

while |χ̂i− χ̂i−1| > εχ̂i, χi 6= χi−1, and i ≤ log2(n)− 2

The proposed method is listed in Algorithm 2. By con-
struction, Algorithm 2 terminates after at most log2(n) − 2
iterations. Compared to Algorithm 1, the cost to obtain the
estimates χ̂0, χ̂1, . . . , χ̂i−2 is roughly4 equal to that of obtain-
ing χ0, χ1, . . . , χi, and thus Algorithm 2 will be cost-effective
compared to Algorithm 1 if and only if χ̂i−2 is a better approx-
imation of tr(A) compared to χi. While Aitken’s ∆2 process
breaks down if the sequence of first differences has a repeating
term, this is not the case with Algorithm 2 since it terminates as
soon as successive probing estimates χi and χi+1 become nu-
merically equal. Note also that the trace estimates χ̂0, χ̂1, . . .,
produced by Algorithm 2 can be further improved by applying
Aitken’s ∆2 process repeatedly. In the next section we illus-
trate the effects of this idea.

4. NUMERICAL EXPERIMENTS

In this section we confirm the acceleration of probing trace es-
timators by Aitken’s ∆2 process on covariance matrices with
a varying degree of feature correlation. Our experiments are
conducted in a Matlab environment in 64-bit arithmetic, on a
single core of a computing system equipped with a 2.3 GHz
Quad-Core Intel Core i9 processor and 64 GB of system mem-
ory.

We compare four different methods: “a)” Algorithm 1, “b)”
MC trace estimator with Rademacher vector variables, “c)” Al-
gorithm 2, and “d)” a repeated application of Algorithm 2 to
the sequence χ̂i (double Aitken). The MC trace estimator pro-

vides estimates of the form tr(A) ≈ 1

k

j=k∑
j=1

zTj Azj , where

the entries of zj ∈ Rn are ±1 with equal probability. Since
the main computational cost of all four approaches listed above
stems from the evaluation of MV products Azj , we will con-
sider a method more efficient than another when it requires
fewer MV products with matrix A to achieve the same accu-
racy. Moreover, the size of our test matrices will be set equal to
n = 2, 048.

Our first set of experiments considers the following class of
model covariance matrices:

Aij =

{
1 if i == j

1/|i− j|θ if i 6= j
, (2)

where θ ∈ N controls the correlation of the feature space. In
particular, higher values of θ imply less correlation among the
variables and lead to stronger decay in the off-diagonal entries
of the model covariance matrix. Figure 1 plots the relative er-
ror achieved by the schemes “a)”-“d)” as the number of sample
vectors 2i increases and θ = {1, 2, 3}. A few remarks are fol-
lowing. First, the accuracy of the trace estimates χ0, χ1, . . .,
returned by the probing technique listed in Algorithm 1 im-
proves as the value of 2i increases (solid “�” line). The pair
of integers listed on top of each entry denotes the value of 2i

required to compute the corresponding approximation (left in-
teger) as well as the cumulative number 20 +21 + . . . 2i of MV

4The additional work needed to compute χ̂0, χ̂1, . . . , χ̂i−2 re-
quires only the calculation of four differences, one multiplication, and
one division between scalars.



products up to this point (right integer). Second, Hutchinson’s
MC trace estimator (solid “O” line) provides a better estimate
of tr(A) for low values of ki = 2i, as expected for matrices
A which are approximately diagonally dominant. However, it
converges slowly as ki increases. The convergence rate of Al-
gorithm 1 can be accelerated by applying Aitken’s ∆2 process
to the sequence {χi}, as discussed in Algorithm 2. This option
is denoted as “Algorithm 2 (a)” (dashed “#” line). In addi-
tion, Aitken’s ∆2 process can be also applied on the sequence
{χ̂i}, which is equivalent to double Aitken and denoted as “Al-
gorithm 2 (b)” (dashed “M” line). Algorithm 2 is the most
efficient scheme, especially when the double-Aitken variant is
exploited. For example, when θ = 3, Aitken’s ∆2 process can
provide up to five orders of magnitude improvement for as low
as ki = 16.
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Fig. 1. Model covariance matrix (see (2)). Top, center, and
bottom figures correspond to θ = 1, θ = 2 and θ = 3, respec-
tively.
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Fig. 2. Matérn covariance kernel (see (3)).

Our second class of test matrices originates from the
Matérn covariance kernel [29]:

φ(x) =
(
√

2νx/`)νKν(
√

2νx/`)ν

2ν−1Γ(ν)
, (3)

where Γ(.) is the Gamma function,Kν (·) is the modified Bessel
function of the second kind of order ν, and ν is a positive scalar
that controls the smoothness of the covariance kernel. The vari-
able ` denotes the characteristic length scale. Figure 2 plots the
same quantities as in Figure 1 for a Matérn covariance kernel
discretized on a 1D grid with ` = 7 and ν = 0.1. Similarly
to the results for the model covariance matrices, Algorithm 2
improves the probing trace estimator and can compete with the
MC estimator once a sufficient number of samples is exploited.

5. CONCLUSION

This paper presented an algorithm to estimate the trace of sym-
metric matrices by applying Aitken’s ∆2 process to trace esti-
mations produced using the probing technique. Numerical ex-
periments performed on covariance matrix kernels of locally
correlated features demonstrate competitive performance ver-
sus probing and Hutchinson’s randomized trace estimator. As
part of future work we plan to extend our work towards apply-
ing Aitken’s ∆2 process to compute the entire diagonal of a ma-
trix function f(A) where f(.) is analytic inside the spectrum
of A. One particular application is the computation of vertex
centralities and top-N graph recommendation. In this setting,
determining the top-N most influential nodes of a network cor-
responds to estimating the main diagonal of matrix functions,
e.g., eA and (I− αA)−1, where A denotes the adjacency ma-
trix of the input undirected graph.
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