
Solving Sparse Linear Systems via Flexible
GMRES with In-Memory Analog

Preconditioning

Vassilis Kalantzis at al.

September 2023

EPrint ID: 2023.6

IBM Research
Thomas J. Watson Research Center

Preprints available from:

https://researcher.watson.ibm.com/researcher/view.php?person=ibm-vkal



Solving Sparse Linear Systems via Flexible
GMRES with In-Memory Analog Preconditioning

Vasileios Kalantzis, Mark S. Squillante, Chai Wah Wu, Anshul Gupta,
Shashanka Ubaru, Tayfun Gokmen, and Lior Horesh

MIT-IBM Watson AI Lab & IBM Research
Email: {vkal,Shahanka.Ubaru}@ibm.com, {mss,cwwu,anshul,tgokmen,lhoresh}@us.ibm.com

Abstract—Analog arrays of non-volatile crossbars leverage
physics to compute approximate matrix-vector multiplications in
a rapid, in-memory fashion. In this paper we consider exploiting
this technology to precondition the Generalized Minimum Resid-
ual iterative solver (GMRES). Since the preconditioner must
be applied through matrix-vector multiplication, approximate
inverse preconditioners are a natural fit. At the same time, the
errors introduced by the analog hardware render an iteration
matrix that changes from one iteration to another. To remedy
this, we propose to combine analog approximate inverse pre-
conditioning with a flexible GMRES algorithm that naturally
incorporates variations of the preconditioner into its model. The
benefit of our approach is that the analog circuit is much simpler
than correcting the errors at the hardware level. Our experiments
with a simulator for analog hardware show that such an analog-
flexible scheme can lead to fast convergence.

Index Terms—Analog hardware, preconditioning, flexible GM-
RES, sparse linear systems

I. INTRODUCTION

The fast iterative solution of sparse systems of linear al-
gebraic equations is one of the most common computational
tasks encountered in computational science and engineering
(1; 2). These linear systems are typically solved by a precondi-
tioned Krylov subspace iterative solver (3). For non-Hermitian
sparse systems, a commonly used Krylov subspace iterative
solver is the preconditioned Generalized Minimum Residual
(PGMRES) algorithm (4).

Traditionally, the solution of sparse linear systems is com-
puted in double precision and the wall-clock time required
to compute an approximate solution is a function of the
convergence rate of the iterative process as well as how fast
digital hardware can execute common basic linear algebraic
operations, such as matrix-vector multiplications (MVMs),
vector additions, and dot products. Over the past decades, the
execution time of these operations keeps reducing as a by-
product of digital microprocessors becoming faster through
an increase in the number of transistors, in accordance with
Moore’s law (5) and a reduction in the size of transistors. The
advent of machine learning, and deep learning in particular, led
to significant hardware advances in low-precision arithmetic,
starting in 2016 with the release of the Tesla P100 Graphics
Processing Unit (GPU) accelerator from NVIDIA that deliv-
ered up to 21.2 Tera Floating-Point Operations per second
(TFLOPS) of half-precision arithmetic, which represents a 4×
improvement over double-precision. The A100 GPU widened

the gap between 16-bit and 64-bit arithmetic, delivering up to
624 TFLOPS of half-precision arithmetic, which represents
an approximately 60× improvement over double-precision
arithmetic. In particular, most recent technological advances
can deliver up to 10− 100× of Giga FLOPS (GFLOPS) even
for sparse matrices (6). The speed-up of the MVM kernel
has revived interest in the use of sparse approximate inverse
preconditioners, such as preconditioners that approximate the
matrix inverse directly and are applied through MVM; see,
e.g., (7; 8) and most recently (9; 10; 11; 12; 13; 14).

Since approximate inverse preconditioners are applied
through MVM, exploiting computational architectures that
speed-up the execution of MVM can lead to significant re-
ductions in the wall-clock time of preconditioned iterative
linear system solvers. While GPUs have led to drastic speed-
ups in the execution of MVMs as noted above, their design
is based on the von Neumann architectural model. Thus, the
performance of the MVM kernel, both in terms of execution
time and energy consumption, is inherently limited by the
latency occurring during the transfer of data from the random
access memory. An alternative paradigm suggested in (15)
is to apply approximate inverse preconditioners through in-
memory computing devices based on non-volative analog
crossbar arrays (16; 17). These devices can achieve high
degrees of concurrency with low energy consumption by
mapping matrices onto arrays of memristive elements capable
of storing information and executing simple operations such
as a multiply-and-add via Ohm’s and Kirchhoff’s laws. Such
hardware devices are becoming more available (18).

In this paper we focus on preconditioning the GMRES
algorithm by executing MVM with approximate inverse pre-
conditioners through analog crossbar arrays. Preconditioning
the GMRES algorithm through analog crossbar arrays has been
previously explored in (19) where it was suggested to apply
a domain decomposition overlapping preconditioner through
in-situ matrix inversion. To enhance the accuracy of the pre-
conditioning step due to analog noise, the authors considered
a bit-slicing technique in conjunction with a circuit compen-
sation approach. Similarly, analog hardware with precision
enhancement has been exploited in the context of numerical
PDEs (20). Other related work includes inner-outer iteration
schemes for dense systems, where analog arrays were used for
the inner solver while iterative refinement was used as an outer
solver in the digital space (21; 22). The work presented in this



Cost per iteration

N
um

be
r o

f i
te

ra
tio

ns

Analog-based 
iterative solvers

Fig. 1: Trade-off of hybrid digital-analog algorithms.

paper is quite different in the sense that we do not consider
any additional hardware other than standard crossbar arrays.
Instead, our proposed approach exploits this analog hardware
and mitigates the analog noise and errors by considering a
variant of GMRES, known as Flexible GMRES (23), which
allows the preconditioner to vary from one iteration to another.
The stochastic analog noise, which leads to a different error
at each iteration, can be then understood as a perturbation
of the original preconditioner mapped to analog hardware.
Therefore, our approach addresses the inaccuracies stemming
from the analog hardware at an algorithmic level, at the
expense of storing a few additional vectors in digital memory.
While these inaccuracies can lead to slower convergence, each
preconditioned iteration can be performed much faster, as
depicted in Figure 1.

II. FLEXIBLE GMRES

One major limitation of Krylov subspace iterative solvers,
such as PGMRES, is that the Krylov subspace must be
built using the same matrix operator. As a result, PGMRES
with analog crossbar arrays is generally impossible unless
additional analog circuitry is added to increase the accuracy
of analog-based MVM. In this paper, instead of increasing
hardware complexity to tame the inexactness of the analog
hardware, we consider a variant of PGMRES that allows us
to fuse the inexactness from the analog computations directly
to the iterative computational model.

This approach is known as Flexible GMRES (FGMRES)
(23), and was originally developed as a variant of PGMRES
that allows the preconditioner to vary from one iteration to
another. While in our case we always aim to apply the same
preconditioner M , the random errors from the analog device
can be treated as variations of the preconditioner using a
backward-error argument. FGMRES is similar to the PGM-
RES algorithm with the exception that the fixed preconditioner
M is replaced by the preconditioner Mj ∈ Rn×n during
the j-th iteration. The preconditioner Mj can be either a
perturbation of M , e.g., a lower precision representation of
M , or a completely different preconditioner. When Mj =
M, j = 1, . . . ,m, FGMRES is mathematically equivalent to
PGMRES with right preconditioning. A detailed description
of the FGMRES algorithm is listed in Algorithm 1.

Similarly to PGMRES, the inner iteration loop of FGMRES
is divided into two parts: a) the Arnoldi process (Steps 3−8);
and b) the computation of the approximate solution xm (Step
9). Recall now that PGMRES computes xm = MVmym, and
thus expresses xm as a linear combination of the vectors
Mvj , j = 1, . . . ,m. When M is constant, the formation
of xm only requires applying M to the vector Vmym. In
contrast to PGMRES, FGMRES bypasses the preconditioned
Krylov subspace and computes an approximate solution xm ∈
x0 + range(Zm) where the columns of the matrix Zm =
[z1, . . . , zm] with zj = Mjvj replace the Krylov subspace
directions of PGMRES. While FGMRES does not produce
a Krylov subspace, it still satisfies the following Krylov-like
relation:

AZm = Vm+1Hm+1,m,

where Vm+1 = [v1, . . . , vm, vm+1] is orthogonal, and the
matrix Hm+1,m = V H

m+1AZm is upper-Hessenberg. Notice
that while FGMRES generates the next preconditioned Krylov
vector as zj = Mjvj , its definition in fact allows z1, . . . , zm
to be chosen even entirely randomly, as long as Zm has full
rank.

Let now xm = x0 + Zmym where ym ∈ Rm. The
corresponding residual rm satisfies

rm = r0 −Axm = r0 −AZmym

= ∥r0∥v1 − Vm+1Hm+1,mym

= Vm+1(e1∥r0∥ −Hm+1,mym).

Recalling that Vm+1 is orthogonal, we have

∥r0 −Axm∥ =
∥∥(e1∥r0∥ −Hm+1,mym)

∥∥.

The coefficient vector ym = argminy∈Rm

∥∥(e1∥r0∥ −
Hm+1,my)

∥∥ is computed such that xm = x0+Zmym satisfies
xm = argmin

z∈x0+range(Zm)

∥r0 −Az∥.

Algorithm 1 Flexible GMRES (FGMRES)

1: input: A ∈ Rn×n; b ∈ Rn; x0 ∈ Rn; tol ∈ R; m ∈ N.
Set e1 = [1, 0, . . . , 0]⊤ ∈ Rm.

2: Compute r0 = b − Ax0, β = ∥r0∥, and set v1 =
r0/β, Z = 0

3: for j = 1 to m do
4: Compute zj = Mjvj and augment Z = [Z, zj ]
5: Compute w = Azj

6: For i = 1, . . . , j:

{
hi,j = w⊤vi
w = w − hi,jvi

7: Set hj+1,j = ∥w∥ and vj+1 = w/hj+1,j

8: end for
9: Solve ym = argmin

y∈Rm

∥βe1 −Hm+1,my∥
10: Compute xm = x0 + Zmym
11: If ∥rm∥ ≤ tol∥r0∥, exit; else, restart from Step 2 with

x0 = xm



III. FGMRES WITH IN-MEMORY ANALOG
PRECONDITIONING

A. Approximate inverse preconditioners

The convergence rate of PGMRES depends on the spec-
trum of the preconditioned iteration matrix AM , where fast
convergence is typically ensured when the eigenvalues of AM
are clustered around 1. In most cases, the default choice for
the preconditioner is to compute an incomplete LU (ILU)
factorization A ≈ LU and set M = (LU)−1 (3). The matrices
L ∈ Rn×n and U ∈ Rn×n are lower and upper triangular,
respectively. ILU preconditioners can be quite efficient as
general-purpose preconditioners, e.g., when A is diagonally
dominant. However, for indefinite or non-diagonally dominant
matrices, the norm of the matrices L−1 and U−1 can be quite
large and/or encounter zero pivots. In addition, the sequential
nature of triangular substitutions generally leads to poor com-
putational performance in parallel computing environments.

Since analog hardware is a highly efficient execution plat-
form for MVMs, it is appropriate to consider preconditioners
M that can be applied via MVM. This can be achieved by
setting up M such that it is a direct approximation of the
matrix inverse A−1. From an optimization perspective, such a
preconditioner can be obtained by solving the optimization
problem argmin

M∈Rn×n

∥I − AM∥2F up to a sparsity constraint

(24; 25; 26; 27; 28). In contrast to incomplete factorizations,
approximate inverse preconditioners are generally more ro-
bust than ILU for indefinite problems. On the other hand,
the inverse of a sparse matrix is generally dense, and thus
an efficient approximate inverse preconditioner M might be
considerably more dense than A. As a result, the application of
M via von Neumann systems introduces higher computational
cost compared to ILU preconditioners. However, as we discuss
next, once copied to analog hardware, the sparsity pattern of
M does not have major effects on the execution of an analog
MVM. This makes analog crossbar array hardware highly
appealing for applying approximate inverse preconditioners.

B. Hybrid digital-analog architecture

The enormous success and applicability of deep neural
networks over the last decade has revolutionized numerical
computing and led to the development of scientific hardware
that can tremendously accelerate important linear algebra
kernels of neural network training, such as MVM, by taking
advantage of reduced precision arithmetic (29). For example,
a batched MVM (i.e., multiple MVMs bundled together)
executing on an NVIDIA A100 GPU can achieve up to a
few hundred TFLOPS. Nonetheless, GPUs are based on the
von Neumann computer model, and thus they store the matrix
data on separate units equipped with memory capacity, e.g.,
dynamic Random Access Memory. As a result, their perfor-
mance for sparse to moderately dense non-batched MVM,
as encountered in Krylov subspace iterative solvers such as
GMRES, is generally much lower, e.g., up to a few hundred
GFLOPS (6).

RPU
Tile

Bus or NoC I/O

Digital Main
MemoryDigital Logic

DAC

A
D
C

RPU
Tile

DAC

A
D
C

RPU
Tile

DAC

A
D
C

Host 
System

Cache Cache Cache

Fig. 2: A hybrid digital-analog architecture consisting of a host
system, an I/O bus, and an accelerator consisting of digital
logic and one or more analog crossbar arrays of resistive
processing units (RPUs).

A memristor is an electronic device that remembers the
amount of charge which previously flowed through it and can
store numerical values via conductance in a non-volatile man-
ner (30). When organized into a 2D crossbar array formation,
the current at each cross point is equal to the product between
the input voltage and stored conductance (Ohm’s law), while
the total current across each column is equal to the sum of
the currents at each cross point (Kirchhoff’s current law). The
computation of the current at each cross point is performed
in parallel, and sensing the accumulated current across each
column is equivalent to computing an in-memory MVM. The
time to perform this task is independent of the matrix size,
thus providing a highly efficient approach to compute MVMs.
Figure 2 depicts a hybrid digital-analog architecture that can
be exploited to compute MVMs. The system consists of a
host system, e.g., CPU, connected to an analog accelerator
through an I/O bus. The accelerator is equipped with some
digital logic to perform low-complexity operations and control
the input/output of data to/from one or more tiles of analog
crossbar arrays. When multiple tiles are available, the matrix
M can be either distributed across tiles (e.g., if it is too big to
fit on a single tile) or replicated among several tiles. A third
option is to take advantage of additional tiles to perform bit-
slicing that increases the accuracy of analog-based MVM, i.e.,
see (19; 31).

C. Modeling MVMs on analog crossbar hardware

We describe next a general procedure for computing MVM
y = Mr on analog crossbar array hardware. Without loss of
generality, let us assume that the matrix M fits on a single
analog crossbar array consisting of n rows and columns of
conductors with a memristive element at each row-column
intersection. The conductance of these elements can be set,
reset or updated in a electrically programmable, non-volatile
manner. The preconditioner can be copied to the crossbar array
by scaling and mapping the nonzero matrix entries M [i, j]
(i.e., the (i, j)-th entry of the matrix M ) to the conductance
Gij of the memristor at the intersection of row i and column j.



The MVM operation y = Mr can be performed by sending
pulses of Vin volts along the columns of the crossbar array
such that the length tj of the pulse along column j is
proportional to the jth entry r[j] of vector r, with suitable
normalization. By Ohm’s Law, this contributes a current equal
to VinGij on the conductor corresponding to row i for a
duration tj . Following Kirchhoff’s Current Law, the currents
along each row accumulate and can be integrated over the
time period equivalent to the maximum pulse length using
capacitors, yielding a charge proportional to

∑n
j=1 M [i, j]r[j],

which in turn is proportional to y[i]. This integrated value
can be recovered as a digital quantity via an analog-to-digital
converter (ADC), and yields an approximation ŷ[i] of y[i].

The above procedure involves multiple sources of non-
deterministic noise so that the output ŷ ∈ Rn is an ap-
proximation of y. Writing M to the crossbar array incurs
multiplicative and additive write noise terms NWm ∈ Rn×n

and NWa ∈ Rn×n, respectively; and the actual conductance
values at the crosspoints of the array is described by M̂ =
M ⊙ (I + NWm) + NWa, where ⊙ denotes element-wise
multiplication. Similarly, digital-to-analog conversion (DAC)
of the vector r into voltage pulses suffers from multiplicative
and additive input noise terms N Im ∈ Rn and N Ia ∈ Rn,
respectively. As a result, the matrix M̂ is effectively multiplied
by a perturbed version of r given by r̂ = r⊙(1+N Im)+N Ia,
where 1 is a vector of all ones.

A characteristic equation to describe the output ŷ of an
analog MVM Mr can be written as in (15):

ŷ = M̂ r̂ ⊙ (1+NOm) +NOa,

where NOm ∈ Rn and NOa ∈ Rn denote the multiplicative
and additive components of the output noise, respectively.
These components reflect the inherent inaccuracies in the
multiplication based on circuit laws and current integration,
as well as the loss of precision in the ADC conversion of
the result vector. In addition to the various noises, another
source of error in analog MVM is that the total charge from
integrating the current along any row is bounded because it
cannot exceed the capacity of the corresponding capacitor.

The stochastic noise characteristics of an analog crossbar
array generally depend on its physical realization (21; 32),
however such considerations are beyond the scope of this
paper. Nonetheless, the behavior of analog arrays is generally
captured by our model and our simulator listed in Section IV.
The analog MVM computation ŷ = M̂ r̂ can be performed
in near-constant time and, accounting for the O(n) I/O cost
for loading operands and reading the results, can achieve an
O(n) speedup in practice over its digital counterpart for a
dense M . Therefore, a linear system solver that can tolerate
analog MVM errors, can also lead to substantial reductions
in the wall-clock time of the solver, even if it requires
more iterations. This trend becomes more pronounced as the
approximate inverse preconditioner M gets denser.

Fig. 3: Mapping a block-Jacobi approximate inverse precon-
ditioner to four separate analog crossbar arrays.

D. Analog block-Jacobi preconditioning

Current technological considerations limit the maximum
size of analog crossbar arrays to a few thousand rows and
columns, which can be several orders of magnitude less
than the size n of current practical matrix problems. More
specifically, if we denote the size of a crossbar array by τ ∈ N,
and assume that each matrix entry is copied to exactly one
crossbar memory element, then storing the preconditioner M

requires
⌈n
τ

⌉2
arrays, which becomes increasingly impractical

as n increases. In addition, several of the entries of M can be
zero, thus leading to a waste of hardware. Hence, as a practical
alternative, we focus on block-Jacobi preconditioners, which
reduce the analog hardware requirements by an integer factor
p ∈ N, where p denotes the level of coarsening of the block-
Jacobi preconditioner. A diagram of our analog block-Jacobi
preconditioning is shown in Figure 3 for the case p = 4.

The application of the block-Jacobi preconditioner
M = blkdiag

([
M[1], . . . ,M[p]

])
onto the vector

r = blkdiag
([
r[1], . . . , r[p]

])
is equal to

Mr =



M[1]r[1]

...
M[p]r[p]


 ,

where M[j] is stored at the jth analog crossbar array and each
MVM M[j]r[j] can be computed independently of each other.
In addition to in-memory execution, a second advantage of
analog block-Jacobi preconditioning is that the cost to perform
an MVM with M[j] does not depend on its sparsity. Thus, the
execution time of the MVM M[j]r[j] is approximately identical
among the p different arrays, leading to nearly optimal load
balancing.

IV. NUMERICAL EXPERIMENTS

In this section we illustrate the behavior of FGMRES
preconditioned via analog crossbar arrays on two typical
model problems stemming from PDE discretizations. Our
experiments were conducted in a Matlab environment (version
R2020b) on a single core of a 2.3 GHz 8-Core Intel i9 machine
equipped with 64 GB of system memory.



We used a Matlab version of the publicly available simu-
lator (33) with a PyTorch interface for emulating the noise,
timing, and energy characteristics of an analog crossbar array.
The simulator models all sources of analog noise outlined
in Section III-C as scaled Gaussian processes. Using Matlab
notation, the components of the matrix write noise were
modeled as randn(·)× 5.0e− 3, and those of the input and
output noises were both modeled as randn(·)× 1.0e− 2;
these are the default settings in the simulator based on cur-
rently realizable analog hardware (34). The number of bits
used in the ADC and DAC was set to 7 and 9, respectively.

Throughout this section we consider the following schemes:
1) GMRES: non-preconditioned GMRES.
2) PGMRES: right-preconditioned GMRES. We consider

preconditioning by approximate inverses (“PGMRES +
AI”) and ILU(0) (“PGMRES + ILU”).

3) IGMRES: inexact, right-preconditioned GMRES. The
approximate inverse preconditioner is applied through
analog hardware.

4) FGMRES: flexible variant of GMRES, preconditioned
by an approximate inverse through MVMs on analog
hardware.

5) FGMRES + Ric(minner): inner-outer flexible variant of
GMRES, preconditioned by minner ∈ Z iterations of
Richardson iteration. Each iteration of the inner solver
is preconditioned by an approximate inverse through
MVMs on analog hardware, i.e., as described in (15).

Unless mentioned otherwise, the initial approximation for all
GMRES variants will be set to zero and the restart cycle will
be set to m = 20. For all GMRES variants we assume that
convergence is established when the residual norm associated
with the approximate solution xm satisfies ∥b − Axm∥ ≤
tol∥b∥, tol ∈ R. By default, we set tol = 1.0e − 8. Table I
lists the default parameters used throughout our experiments
to simulate the analog hardware and construct the approximate
inverse preconditioner via the SPAI algorithm (25).

TABLE I: Default parameters.
Module Parameter Value

Analog device NW 5.0e− 3
Analog device NI 1.0e− 2
Analog device NO 1.0e− 2
GMRES tol 1.0e− 8
GMRES mit 250
GMRES m 20
Approximate inverse nnzAI 50
Approximate inverse tolAI 5.0e− 2

We consider Finite Difference discretizations of Poisson’s
equation with Dirichlet boundary conditions (“fd2d” and
“fd3d”) on two dimentions (2D) and three dimensions (3D):

−∆u− cu = f in Ω,

u = 0 in ∂Ω,

where Ω = (0, 1)2 (2D) and Ω = (0, 1)3 (3D), and ∂Ω denotes
the boundary of the domain. We assume 5-point (2D) and
7-point (3D) centered discretizations on a regular mesh. In

particular, for the 2D case we consider a 50 × 50 grid with
c = 0.1, leading to a discretized Laplacian of size n = 2500.
For the 3D case, we assume a 10× 10× 10 grid and c = 0.8,
leading to a discretized Laplacian of size n = 1000.

Figure 4 plots the relative residual norm curves for all
the schemes considered, where each application of the pre-
conditioned Richardson iteration performs minner = 4 inner
iterations. Moreover, for PGMRES, we considered both ap-
proximate inverse and ILU(0) preconditioners. Every exper-
iment is performed three times, each time with a different
coarsening p ∈ {1, 2, 4}. A few remarks are as follows. First,
the convergence of IGMRES is greatly impacted by restarting
due to the inexact residual computation at the beginning of
each cycle. Second, FGMRES without Richardson acceleration
typically converges slower than PGMRES (recall Figure 1).
Nonetheless, the former requires no digital FLOPS during
the application of the preconditioner, and thus it is more
appropriate to be compared against GMRES and IGMRES.
In this context, observe that the convergence of FGMRES is
not affected by restarting, i.e., FGMRES incorporates analog
noise directly into its model. Finally, FGMRES + Ric leads to
the fastest convergence overall, especially for larger p.

Figure 5 plots the relative residual norm achieved by FGM-
RES + Ric with minner ∈ {0, 1, 2, 3, 4}. Note that the choice
“Ric(0)” corresponds to block-Jacobi preconditioning with no
inner iteration, i.e., FGMRES. In summary, increasing the
number of inner Richardson iterations in FGMRES enhances
convergence, especially for smaller values of p.

0 1 2 3 4 5

10
7

Fig. 6: Number of FLOPS required by the FGMRES and
PGMRES + ILU preconditioner for the matrix problems
“fd2d” (solid) and “fd3d” (dashed).

Figure 6 plots the number of FLOPS required by FGMRES
+ Ric with minner = 4 compared to PGMRES + ILU, for
the matrix problems “fd2d” (solid) and “fd3d” (dashed). For
FGMRES + Ric, the block-Jacobi approximate inverse was
generated with nnzAI = 150 and tolAI = 1.0e− 2. For both
problems, FGMRES + Ric required 2× to 4× fewer FLOPS
than PGMRES + ILU. Moreover, FGMRES + Ric avoids the
non-scalable triangular substitutions required by ILU.



50 100 150 200 250
10

-8

10
-6

10
-4

10
-2

10
0

50 100 150 200 250
10

-8

10
-6

10
-4

10
-2

10
0

50 100 150 200 250
10

-8

10
-6

10
-4

10
-2

10
0

50 100 150 200 250
10

-8

10
-6

10
-4

10
-2

10
0

50 100 150 200 250
10

-8

10
-6

10
-4

10
-2

10
0

50 100 150 200 250
10

-8

10
-6

10
-4

10
-2

10
0

Fig. 4: Convergence plots of various GMRES variants and block-Jacobi coarsenings.

10 20 30 40 50 60

10
-8

10
-6

10
-4

10
-2

10
0

10 20 30 40 50

10
-8

10
-6

10
-4

10
-2

10
0

10 20 30 40 50 60
10

-8

10
-6

10
-4

10
-2

10
0

50 100 150 200

10
-8

10
-6

10
-4

10
-2

10
0

50 100 150 200
10

-8

10
-6

10
-4

10
-2

10
0

50 100 150 200
10

-8

10
-6

10
-4

10
-2

10
0

Fig. 5: Convergence plots of FGMRES preconditioned by Richardson iteration for the matrix problems “fd2d” and “fd3d”.

V. CONCLUSION

This paper considered leveraging analog crossbar hardware
as an in-memory accelerator to apply approximate inverse
preconditioners to Krylov iterative methods. Analog crossbar
hardware can perform MVMs extremely fast, leading to a rapid
application of sparse approximate inverse preconditioners, irre-
spectively of their non-zero sparsity pattern. On the other hand,
analog crossbar hardware introduces stochastic errors, and thus
the application of sparse approximate inverses can be quite
inaccurate. One option to remedy this is by using additional
hardware to compensate for circuit non-idealities (see, e.g.,

(19)). Instead, the idea put forth in this paper is to try and rem-
edy this issue at an algorithmic level by using flexible Krylov
algorithms, in particular FGMRES, that naturally incorporate
inexactness in their model. Numerical results with simulated
hardware on two model problems verified the robustness of
the proposed scheme. As part of future work, we plan to
perform a detailed theoretical and experimental analysis of
the behavior of FGMRES on general sparse problems using
the IBM Analog Hardware Acceleration Kit (33), a (CUDA-
capable) C++ simulator that allows for simulating a wide range
of analog devices and crossbar configurations.



REFERENCES

[1] G. Strang, Computational Science and Engineering.
Wellesley-Cambridge Press, 2007.

[2] T. Xu, V. Kalantzis, R. Li, Y. Xi, G. Dillon, Y. Saad,
“pargemslr: A parallel multilevel schur complement low-
rank preconditioning and solution package for general
sparse matrices,” Par. Comp., vol. 113, p. 102956, 2022.

[3] Y. Saad, Iterative methods for sparse linear systems.
SIAM, 2003.

[4] Y. Saad, M. H. Schultz, “GMRES: A generalized mini-
mal residual algorithm for solving nonsymmetric linear
systems,” SIAM J. Sci. Stat. Comp., 7(3): 856–869, 1986.

[5] G. E. Moore et al., “Cramming more components onto
integrated circuits,” 1965.

[6] H. Anzt, Y. M. Tsai, A. Abdelfattah, T. Cojean, J. Don-
garra, “Evaluating the performance of NVIDIA’s A100
ampere GPU for sparse and batched computations,” in
IEEE/ACM Perf. Model., Benchmark. Sim. High Perf.
Comp. Sys. (PMBS), pp. 26–38, 2020.

[7] M. Ament, G. Knittel, D. Weiskopf, W. Strasser, “A
parallel preconditioned conjugate gradient solver for the
poisson problem on a multi-gpu platform,” in Euromicro
Conf. Par., Dist. and Net. Proc., pp. 583–592, 2010.

[8] M. M. Dehnavi, D. M. Fernandez, J.-L. Gaudiot, D. D.
Giannacopoulos, “Parallel sparse approximate inverse
preconditioning on graphic processing units,” IEEE
TPDS, 24(9): 1852–1862, 2012.

[9] G. Isotton, C. Janna, M. Bernaschi, “A GPU-accelerated
adaptive fsai preconditioner for massively parallel simu-
lations,” Int. J. HPCA, p. 10943420211017188, 2021.

[10] F. Göbel, T. Grützmacher, T. Ribizel, H. Anzt, “Mixed
precision incomplete and factorized sparse approximate
inverse preconditioning on gpus,” in Euro. Conf. Par.
Proc., pp. 550–564, 2021.

[11] M. Bernaschi, M. Carrozzo, A. Franceschini, C. Janna,
“A dynamic pattern factored sparse approximate inverse
preconditioner on graphics processing units,” SIAM J.
Sci. Comp., 41(3): C139–C160, 2019.

[12] J. Gao, Q. Chen, G. He, “A thread-adaptive sparse
approximate inverse preconditioning algorithm on multi-
gpus,” Par. Comp., vol. 101, p. 102724, 2021.

[13] H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S.
Quintana-Ortı́, “Adaptive precision in block-Jacobi pre-
conditioning for iterative sparse linear system solvers,”
Con. Comp.: Prac. Exp., 31(6): e4460, 2019.

[14] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein,
M. Köhler, “Preconditioned Krylov solvers on GPUs,”
Par. Comp., vol. 68, pp. 32–44, 2017.

[15] V. Kalantzis, A. Gupta, L. Horesh, T. Nowicki, M. S.
Squillante, C. W. Wu, T. Gokmen, H. Avron, “Solving
sparse linear systems with approximate inverse precondi-
tioners on analog devices,” IEEE HPEC, pp. 1–7, 2021.

[16] Q. Xia, J. J. Yang, “Memristive crossbar arrays for brain-
inspired computing,” Nature Mat., 18(4):309–323, 2019.

[17] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh,

E. Eleftheriou, “Memory devices and applications for
in-memory computing,” Nature Nano., 15(7): 529–544,
2020.

[18] S. Ambrogio and others, “An analog-AI chip for energy-
efficient speech recognition and transcription,” Nature,
620: 768-775, 2023.

[19] B. Feinberg, R. Wong, T. P. Xiao, C. H. Bennett, J. N.
Rohan, E. G. Boman, M. J. Marinella, S. Agarwal,
E. Ipek, “An analog preconditioner for solving linear
systems,” in IEEE HPCA, pp. 761–774, 2021.

[20] M. A. Zidan, Y. Jeong, J. Lee, B. Chen, S. Huang, M. J.
Kushner, W. D. Lu, “A general memristor-based partial
differential equation solver,” Nature Elec., 1(7): 411–420,
2018.

[21] M. Le Gallo, A. Sebastian, R. Mathis, M. Manica,
H. Giefers, T. Tuma, C. Bekas, A. Curioni, E. Eleft-
heriou, “Mixed-precision in-memory computing,” Nature
Elec., 1(4): 246–253, 2018.

[22] I. Richter, K. Pas, X. Guo, R. Patel, J. Liu, E. Ipek,
E. G. Friedman, “Memristive accelerator for extreme
scale linear solvers,” GOMACTech, 2015.

[23] Y. Saad, “A flexible inner-outer preconditioned GMRES
algorithm,” SIAM J. Sci. Comp., 14(2): 461–469, 1993.

[24] M. W. Benson, “Iterative solution of large scale linear
systems,” Ph.D. dissertation, 1973.

[25] M. J. Grote, T. Huckle, “Parallel preconditioning with
sparse approximate inverses,” SIAM J. Sci. Comp., 18(3):
838–853, 1997.

[26] M. Benzi, M. Tuma, “A comparative study of sparse
approximate inverse preconditioners,” Appl. Num. Math,
30(2-3): 305–340, 1999.

[27] E. Chow, “A priori sparsity patterns for parallel sparse ap-
proximate inverse preconditioners,” SIAM J. Sci. Comp.,
21(5): 1804–1822, 2000.

[28] ——, “Parallel implementation and practical use of
sparse approximate inverse preconditioners with a priori
sparsity patterns,” Int. J. High Perf. Comp. Appl., 15(1):
56–74, 2001.

[29] I. Goodfellow, Y. Bengio, A. Courville, Deep learning.
MIT press, 2016.

[30] L. Chua, “Memristor-the missing circuit element,” IEEE
Trans. Circuit Theory, 18(5): 507–519, 1971.

[31] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang,
E. Ipek, “Enabling scientific computing on memristive
accelerators,” ISCA, pp. 367–382, 2018.

[32] W. Haensch, T. Gokmen, and R. Puri, “The next gen-
eration of deep learning hardware: Analog computing,”
Proc. IEEE, vol. 107, pp. 108–122, 2019.

[33] M. J. Rasch, D. Moreda, T. Gokmen, M. L. Gallo,
F. Carta, C. Goldberg, K. E. Maghraoui, A. Sebastian,
and V. Narayanan, “A flexible and fast pytorch toolkit
for simulating training and inference on analog crossbar
arrays,” arXiv preprint arXiv:2104.02184, 2021.

[34] T. Gokmen and Y. Vlasov, “Acceleration of deep neu-
ral network training with resistive cross-point devices:
Design considerations,” Frontiers Neuro., vol. 10, 2016.


