
A Hierarchical Low-Rank Schur Complement
Preconditioner for Indefinite Linear Systems

Geoffrey Dillon, Vassilis Kalantzis, Yuanzhe Xi, and Y. Saad

June 2018

EPrint ID: 2018.5

Department of Computer Science and Engineering
University of Minnesota, Twin Cities

Preprints available from: http://www-users.cs.umn.edu/kalantzi

SIAM J. SCI. COMPUT. c© XXXX Society for Industrial and Applied Mathematics1

Vol. 0, No. 0, pp. 000–0002

A HIERARCHICAL LOW RANK SCHUR COMPLEMENT3

PRECONDITIONER FOR INDEFINITE LINEAR SYSTEMS∗
4

GEOFFREY DILLON† , VASSILIS KALANTZIS† , YUANZHE XI† , AND YOUSEF SAAD†5

Abstract. Nonsymmetric and highly indefinite linear systems can be quite difficult to solve6

by iterative methods. This paper combines ideas from the multilevel Schur low rank preconditioner7

developed by Y. Xi, R. Li, and Y. Saad [SIAM J. Matrix Anal., 37 (2016), pp. 235–259] with8

classic block preconditioning strategies in order to handle this case. The method to be described9

generates a tree structure T that represents a hierarchical decomposition of the original matrix.10

This decomposition gives rise to a block structured matrix at each level of T . An approximate11

inverse of the original matrix based on its block LU factorization is computed at each level via a low12

rank property that characterizes the difference between the inverses of the Schur complement and13

another block of the reordered matrix. The low rank correction matrix is computed by several steps14

of the Arnoldi process. Numerical results illustrate the robustness of the proposed preconditioner15

with respect to indefiniteness for a few discretized partial differential equations (PDEs) and publicly16

available test problems.17

Key words. block preconditioner, Schur complements, multilevel, low rank approximation,18

Krylov subspace methods, domain decomposition, nested dissection ordering19

AMS subject classifications. 65F08, 65F10, 65F50, 65N55, 65Y0520

DOI. 10.1137/17M114332021

1. Introduction. This paper focuses on the solution of large nonsymmetric22

sparse linear systems23

(1.1) Ax = b24

via Krylov subspace methods where A ∈ Cn×n and b ∈ Cn. When solving (1.1),25

it is often necessary to combine one of these Krylov methods with some form of26

preconditioning. For example, a right-preconditioning method would solve the system27

AM−1u = b,M−1u = x in place of (1.1). Other variants include left and two-sided28

preconditioners. Ideally, M is an approximation to A such that it is significantly29

easier to solve linear systems with it than with the original A.30

A commonly used preconditioner is the incomplete LU (ILU) factorization of A,31

where A ≈ LU = M . ILU preconditioners can be very effective for certain types32

of linear systems. However, if the original matrix A is poorly conditioned or highly33

indefinite (A has eigenvalues on both sides of the imaginary axis), then ILU methods34

can fail due to very small pivots or unstable factors [12, 42]. Another disadvantage of35

ILU methods is their poor performance on high-performance computers, e.g., those36

with graphics processing units [33] or Intel Xeon Phi processors. Algebraic multigrid37

(AMG) is another popular technique for solving problems arising from discretized38

PDEs. Multigrid methods are provably optimal for a wide range of SPD matrices39

and also perform well in parallel. However, without specialization, multigrid will40

fail on even mildly indefinite problems. Sparse approximate inverses emerged in the41

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section August 14,
2017; accepted for publication (in revised form) April 3, 2018; published electronically DATE.

http://www.siam.org/journals/sisc/x-x/M114332.html
Funding: This work was supported by NSF under grant DMS-1521573 and by the Minnesota

Supercomputing Institute.
†Department of Computer Science & Engineering, University of Minnesota, Twin Cities, Min-

neapolis, MN 55455 (gdillon@umn.edu, kalan019@umn.edu, yxi@umn.edu, saad@umn.edu).

A1

A2 DILLON, KALANTZIS, XI, AND SAAD

1990s as alternatives to ILU factorizations [9, 13, 22]. These methods were mostly42

abandoned due to their high cost in terms of both arithmetic and memory usage. A43

subsequent class of preconditioners were based on rank-structured matrices [10]. Two44

such types of matrices areH2-matrices [23, 24] and hierarchically semiseparable (HSS)45

matrices [49, 50, 51]. Both of these forms are the result of a partition of the original46

matrix where some of the off-diagonal blocks are approximated by low rank matrices.47

These ideas have been used to develop both sparse direct solvers and preconditioners48

[52]. Similarly, it is also possible to exploit preconditioners based on hierarchical LU49

factorizations [4].50

In this paper we focus on approximate inverse preconditioners which are based51

on low rank corrections. Such approaches include the multilevel low rank (MLR)52

[32], the Schur complement low rank (SLR) preconditioner [34], and the multilevel53

Schur complement low rank (MSLR) preconditioner [46]. The idea behind the MSLR54

preconditioner is to combine a multilevel hierarchical interface decomposition (HID)55

ordering [25] along with an efficient Schur complement approximation. This approach56

is shown to be much less sensitive to indefiniteness than the classical ILU and domain57

decomposition based methods. However, MSLR is designed for symmetric problems.58

This paper presents a preconditioner that incorporates a modified hierarchical low59

rank approximation of the inverse Schur complement from the MSLR preconditioner60

into a block preconditioner based on the block LU factorization of A. The resulting61

method will be called a generalized multilevel Schur complement low rank (GMSLR)62

preconditioner. Two characteristics of GMSLR are worth highlighting. First, GM-63

SLR is designed to be applicable to a wide range of problems. The preconditioner is64

nonsymmetric, changes at each iteration, and, since it incorporates inner solves, uses65

flexible GMRES [40] as the accelerator. The method also performs well for symmetric66

matrices. As observed in [7, section 10.1.2], the loss of symmetry incurred by appli-67

cation of a nonsymmetric preconditioner is not a major concern provided that good68

approximations to certain blocks of A are available. The numerical experiments will69

confirm this observation. Second, a property that is inherited from MSLR is that the70

GMSLR preconditioner computes a recursive, multilevel approximation to the inverse71

of the Schur complement. GMSLR is a block preconditioner with inner sub solves re-72

quired at every outer iteration. These inner solves can themselves be preconditioned73

in order to reduce computational costs. One of these required inner solves is with the74

Schur complement; i.e., we must solve Sy = g. For most problems, this inverse Schur75

complement approximation turns out to be an effective preconditioner for these inner76

solves. Since an important goal of this paper is to deal with indefinite problems, we77

explored another improvement targeted specifically at such problems. This improve-78

ment consists of a well-established strategy [20, 35, 39, 45, 48] of adding complex shifts79

to the diagonal prior to performing any of the ILU factorizations required by GMSLR.80

In the case of GMSLR, this entails modifying the diagonal of coefficient matrix at each81

level by adding a complex scalar. As is the case for other (standard) preconditioners82

[39, 48], this strategy also has the effect of improving robustness while decreasing83

the fill-in required by GMSLR, especially for highly indefinite problems such as those84

arising from Helmholtz problems.85

We note at this point that our focus is on a purely algebraic viewpoint where A86

is a general sparse indefinite matrix that does not necessarily originate from the dis-87

cretization of a partial differential equation. Therefore, we do not consider approaches88

based on hierarchical matrices.89

This paper is organized as follows. In section 2 we briefly review the HID ordering.90

Section 3 has a brief overview of block preconditioning that motivates the need for91

the low rank property of the inverse of the Schur complement. The details of the92

LOW RANK PRECONDITIONER FOR INDEFINITE SYSTEMS A3

Schur complement approximation are given in section 4. In section 5 we present93

the preconditioner construction process. A 2-level analysis of the preconditioned94

eigenvalues is presented in section 6. Then, in section 7, we present some numerical95

results from test problems and problems from the SuiteSparse Matrix Collection [17].96

Concluding remarks and some ideas for future work can be found in section 8.97

2. HID ordering. Reordering the original system matrix A is essential for the98

performance of direct as well as iterative methods [8, 31, 38, 43]. GMSLR uses one99

such reordering technique known as hierarchical interface decomposition (HID) [25].100

This ordering has also been used in the context of hierarchical linear system solvers101

[5] but is applicable to a wide class of sparse matrices, not just those that originate102

from PDEs. An HID ordering can be obtained in a number of ways. A particular103

method for obtaining such an ordering is the well-known nested dissection method104

[21]. Nested dissection recursively partitions the adjacency graph of A into two disjoint105

subgraphs and a vertex separator in such a way that the removal of the vertices of106

the separator from the original graph results in two disjoint subgraphs. Each level of107

bisection produces a new separator and new subgraphs. This level information can108

be represented by an HID tree T . The matrix itself is reordered by levels, starting109

with level 0 and ending with level L− 1.110

Since we assume that A is large, sparse, and nonsymmetric, then an HID ordering111

results in the following multilevel, recursive structure:112

(2.1) Al =

(
Bl Fl

El Cl

)
and Cl ≡ Al+1 for l = 0 : L− 1.113

In this notation, A0 denotes the original matrix A after HID ordering, whereas Al is114

the submatrix associated with the lth-level connector(s). The Bl block-itself has a115

block-diagonal structure due to the block independent set ordering [43], making solves116

with Bl ideally suited for parallel computation. Figure 2.1 shows an example of the117

HID ordering for a three-dimensional (3D) convection-diffusion operator discretized118

with the standard 7-point finite difference stencil. The left subfigure plots the nonzero119

pattern of the entire matrix while the right subfigure is a close-up view of the nonzero120

pattern of the matrix C0 ≡ A1.121

0 2000 4000 6000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000
7000 7500 8000

7000

7200

7400

7600

7800

8000

Fig. 2.1. A three-level HID ordered 3D convection-diffusion matrix with zero Dirichlet boundary
conditions. The red (solid) lines separate the different levels. The green (dashed) lines separate
subdomains located at the same level. Left: The original matrix is discretized on a 20 × 20 × 20
regular grid with the standard 7-point stencil. Right: Close-up view of the nonzero pattern of the
matrix C0 ≡ A1.

122

123

124

125

126

A4 DILLON, KALANTZIS, XI, AND SAAD

3. Block preconditioning. Domain decomposition reordering gives rise to lin-127

ear systems of the form128

(3.1) A =

(
B F
E C

)
;129

see [2, 11]. Similar block structured matrices also arise from the discretization of130

systems of partial differential equations. In these coupled systems, the individual131

blocks usually correspond to differential/integral operators; however, in this context132

they represent different sets of unknowns (interior, interface, coupling) that result133

from domain decomposition. There is a large body of work on preconditioning these134

systems; mostly from the point of view of saddle point systems; see [6, 7, 28, 36, 37].135

For examples of preconditioning other coupled systems of PDEs, see [14, 26, 27].136

At the starting level, i.e., l = 0, GMSLR uses a block triangular preconditioner137

of the form138

(3.2) P =

(
B̃0 F0

0 S̃0

)
,139

where B̃0 is an approximation to the (1, 1) block of A0 and S̃0 is an approximation140

to the Schur complement S0 = C0 − E0B
−1
0 F0.141

In the ideal case where B̃0 = B0 and S̃0 = S0, it is well known that the matrix142

A0P−1
ideal has a quadratic minimal polynomial, which means that GMRES will converge143

in two iterations [28, 37]. Therefore the total cost of the procedure based on the ideal144

form of (3.2) is two linear solves with B0 and two linear solves with S0, plus additional145

sparse matrix-vector products. This is made clear by looking at the factored form of146

P−1
ideal:147

(3.3) P−1
ideal =

(
B0 F0

S0

)−1

=

(
B−1

0

I

)(
I −F0

I

)(
I

S−1
0

)
.148

This choice corresponds to using only the upper triangular part of the block LU149

factorization of A0 as a preconditioner. If both parts of this factorization are used,150

i.e., if our preconditioner is of the form151

(3.4) P−1 =

(
B−1

0

I

)(
I −F0

I

)(
I

S−1
0

)(
I

−E0B
−1
0 I

)
,152

then in the ideal case we have an exact inverse of A0 and a Krylov method will153

converge in a single iteration at the total cost of two solves with B0 and one solve154

with S0. Thus, in all, using (3.4) saves one S0 solve over (3.3).155

The scenario just described involves ideal preconditioners (3.3) and (3.4), which156

are, however, not practical since they involve the exact computation of S−1
0 . In157

practice, B̃0 and S̃0 are approximated, at the cost of a few extra outer iterations.158

With these approximations in place, it turns out that there is little difference in159

practice between these two options, and, based on our experience, we prefer to use160

(3.2). This issue will be revisited at the end of section 7.1.1.161

Similar to [34], we solve linear systems with the B blocks by using ILU factor-162

izations. Approximations to the Schur complement are typically tailored specifically163

to the problem being studied (e.g., the pressure convection diffusion [19] and least-164

squares commutator [18] preconditioners for Navier–Stokes). However, in our frame-165

work, the block form of A is the result of a reordering of the unknowns, and so our166

LOW RANK PRECONDITIONER FOR INDEFINITE SYSTEMS A5

Schur complement approximation is inherently algebraic and not based on the physics167

of the problem. We base our Schur complement approximation on ideas from [34, 46].168

4. Schur complement approximation. GMSLR is an extension of the MSLR169

preconditioner of [46] based on approximating the block LDU factorization of (2.1),170

(4.1) Al =

(
I

ElB
−1
l I

)(
Bl

Sl

)(
I B−1

l Fl

I

)
,171

at every level l = 0, . . . , L− 1. We write the Schur complement as172

(4.2) Sl =
(
I − ElB

−1
l FlC

−1
l

)
Cl ≡ (I −Gl)Cl.173

Let the complex Schur decomposition1 of Gl be174

(4.3) Gl = ElB
−1
l FlC

−1
l = WlRlW

H
l ,175

where Wl is unitary and Rl is an upper triangular matrix whose diagonal contains176

the eigenvalues of Gl. Substituting (4.3) into (4.2) we get that177

(4.4) Sl =
(
I −WlRlW

H
l

)
Cl = Wl (I −Rl)W

H
l Cl.178

Then, the Sherman–Morrison–Woodbury formula yields the inverse of Sl,179

(4.5) S−1
l = C−1

l Wl(I −Rl)
−1WH

l = C−1
l

[
I +Wl((I −Rl)

−1 − I)WH
l

]
,180

which reduces to181

(4.6) S−1
l = C−1

l + C−1
l Wl

[
(I −Rl)

−1 − I
]
WH

l .182

Some observations about the matrix S−1
l − C−1

l will be stated in the next section.183

In our algorithm, we do not compute the full Schur decomposition of Gl, just the184

kl × kl leading submatrix of Rl and the first kl Schur vectors. These choices give rise185

to the following inverse Schur complement approximation.186

Definition 4.1. Let Gl = ElB
−1
l FlC

−1
l , l = 0 . . . L − 1, and Gl = WlRlW

H
l be187

its Schur decomposition at level l. In addition, let Wl,kl
be the matrix of the first kl188

Schur vectors, kl ≤ sl, of Wl, where sl denotes the size of the matrix Cl. If we define189

Rl,kl
to be the kl×kl leading principal submatrix of Rl, then the approximate lth-level190

inverse Schur complement S̃−1
l,kl

is given by191

(4.7) S̃−1
l,kl

= C−1
l (I +Wl,kl

Hl,kl
WH

l,kl
),192

where193

(4.8) Hl,kl
= [(I −Rl,kl

)−1 − I].194

The inverse Schur complement approximation in (4.7) will be used at every level195

l = 0, . . . , L − 1. Due to the potential large size of the Cl blocks, we can only afford196

to factor CL−1 since it is the smallest of all the Cl blocks. For l 6= L − 1 we use a197

slightly modified version of the recursive scheme of [46] for approximating the action198

of C−1
l on a vector. The details of this approximation will be shown in section 5.199

1Throughout the rest of this paper we use the superscript “H” to denote the conjugate transpose.

A6 DILLON, KALANTZIS, XI, AND SAAD

4.1. Low rank property of S−1
l − C−1

l . Consider the inverse Schur com-200

plement formula given by (4.6). In this section we claim that for certain problems,201

the matrix S−1
l − C−1

l is of low rank. If this is the case, then (4.7) will be a good202

approximation to (4.6). The only assumption we make on the blocks Bl, Cl is that203

they have LU factorizations, i.e.,204

(4.9) Bl = LBl
UBl

, Cl = LCl
UCl

.205

In practice we will use incomplete LU factorizations, so instead206

Bl ≈ LBl
UBl

, Cl ≈ LCl
UCl

.207

Note that for 3D problems the number of interface points (i.e., the size of the Cl208

block) can be quite large, making this factorization too costly. This is part of the209

motivation for the multilevel decomposition.210

To see that S−1
l − C−1

l is usually of low rank, again define the matrix Gl by211

(4.10) Gl = ElB
−1
l FlC

−1
l = (Cl − Sl)C

−1
l .212

Let γi, i = 1, . . . , s, be the eigenvalues of Gl (and also Rl) and define Xl ≡ Cl(S
−1
l −213

C−1
l). By (4.6) the eigenvalues θ1, θ2, · · · , θs−1, θs of Xl are given explicitly by214

(4.11) θi =
γi

1− γi
, i = 1, . . . , s,215

since (I −Gl)
−1 − I = Gl(I −Gl)

−1.216

As long as the eigenvalues γi of Gl are not clustered at 1, the eigenvalues θi of217

Xl will be well separated. This in turn means that S−1
l − C−1

l can be approximated218

by a low rank matrix. This was studied in detail in [46, section 2] for the symmetric219

case, where a theoretical bound for the numerical rank was established.220

4.2. Building the low rank correction. We use Arnoldi’s method [1] to build221

the low rank correction matrices in (4.7). This approximation can be efficient if the222

desired eigenpairs of Gl are on the periphery of the spectrum. However, as we shall223

see in the numerical results, this is simply not the case for some of the more indefinite224

problems. A particular remedy is to take more steps of Arnoldi’s method.225

Taking m steps of Arnoldi’s method on Gl yields the Krylov factorizations,226

GlUm = UmHm + hm+1,mum+1e
T
m227

UH
mGlUm = Hm,228

where Um is an orthonormal matrix and Hm is a Hessenberg matrix whose eigenvalues229

(also called Ritz values) are good estimates to the extreme eigenvalues of Gl. We then230

take the complex Schur factorization of Hm231

(4.12) QHHmQ = T.232

We can reorder the kl eigenvalues closest to 1 we wish to deflate so that they233

appear as the first kl diagonal entries of T [3, 44]. The low rank matrices in (4.7) are234

approximated by235

(4.13) Rl,kl
≈ T1:kl,1:kl

and Wl,kl
≈ UmQ:,1:kl

.236

LOW RANK PRECONDITIONER FOR INDEFINITE SYSTEMS A7

5. Preconditioner construction process. In this section we show how the low237

rank property discussed in the previous section is used to build an efficient precondi-238

tioner. The only assumption we make is that each of the Bl, Cl blocks is nonsingular.239

This assumption is typically satisfied unless the original matrix has a block of all zeros240

(e.g., a saddle point system). At the end of this section we also present an analysis241

of the computational and memory costs of the proposed preconditioner.242

5.1. 3-level scheme. We illustrate the steps taken to solve Ax = b with a 3-level243

example.244

Step 0: Apply a 3-level HID ordering to the original matrix A and right-hand side245

b. Call the resulting reordered matrix and right-hand side A0 and b0, respec-246

tively.247

Step 1: At this level (only) we use the block triangular matrix248

U−1
0 =

(
B0 F0

S0

)−1

=

(
B−1

0

I

)(
I −F0

I

)(
I

S−1
0

)
249

as a right preconditioner for A0; i.e., we solve A0U−1
0 u = b0. Here we approx-250

imately factor B0 by ILU and approximate the Schur complement by251

S−1
0 ≈ S̃−1

0 = C−1
0 (I +W0H0W

H
0),252

where H0 and W0 are taken from (4.8) and (4.13), respectively. To solve with253

C0, we refer to (2.1) and move from level 0 to level 1.254

Step 2: At level 1, we have255

C−1
0 = A−1

1 =

(
I −B−1

1 F1

I

)(
B−1

1

S−1
1

)(
I

−E1B
−1
1 I

)
,256

where S−1
1 is approximated by C−1

1 plus a low rank correction,257

S−1
1 ≈ S̃−1

1 = C−1
1 (I +W1H1W

H
1).258

Next we move up a level again to define an approximate inverse for C1,259

referring again to (2.1).260

Step 3: At level 2 we have261

C−1
1 = A−1

2 =

(
I −B−1

2 F2

I

)(
B−1

2

S−1
2

)(
I

−E2B
−1
2 I

)
.262

Similarly to Step 2, we now approximate S−1
2 by C−1

2 plus a low rank correc-263

tion term, i.e.,264

S−1
2 ≈ S̃−1

2 = C−1
2 (I +W2H2W

H
2).265

As this is the last level, we compute the ILU factorization C2 ≈ LC2UC2 .266

In order to apply the preconditioner U−1
0 , the actual algorithm starts at level 2267

and proceeds up to level 0. For this particular example, that means we start forward-268

backward solving with the ILU factorization of C2 since C−1
2 is needed in order to269

apply S−1
2 . Now that the action of S−1

2 is available, we can then approximate A−1
2 ,270

and the pattern continues until we hit level 0, i.e.,271

LC2
UC2
→ C−1

2 → S̃−1
2 → A−1

2 → S̃−1
1 → A−1

1 → S̃−1
0 → U−1

0 .272

Once C−1
l (or its action on a vector) is available, the low rank correction matrices273

Wl, Hl can be computed.274

A8 DILLON, KALANTZIS, XI, AND SAAD

5.2. General case. When computing the partial Schur decomposition of the275

matrix Gl, we need to be able to compute matrix vector products with the matrix276

ElB
−1
l FlC

−1
l at each level l. We already have the factors of Bl, so any matrix-vector277

product with B−1
l can be computed with one forward and one backward substitution.278

The same does not hold true for Cl, since we only compute its factorization at level279

L − 1. However, we already have an approximate factorization of A−1
l+1, and since280

C−1
l = A−1

l+1 we can use this approximation to apply C−1
l to a vector. The construction281

of the preconditioner is summarized in Algorithm 1. The details of the recursively282

defined product of C−1
l with a vector b are given in Algorithm 2.283

Algorithm 1. Generalized multilevel Schur low rank (construction phase).

1: procedure GMSLR
2: Apply an L-level reordering to A (A0 = reordered matrix).
3: for level l from L− 1 to 0 do
4: if l = L− 1 then
5: Compute ILU factorization of CL−1, CL−1 ≈ LCL−1

UCL−1

6: end if
7: Compute ILU factorization of Bl, Bl ≈ LBl

UBl
.

8: Perform kl steps of the Arnoldi process . Call Algorithm 2 to apply C−1
l

[Vl,Kl] = Arnoldi(ElU
−1
Bl
L−1
Bl
FlC

−1
l , kl)

9: Compute the complex Schur decomposition Kl = WTWH .
10: Compute Wl,kl

= VlW and set Rl,kl
= T1:kl,1:kl

.
11: Compute Hl = (I −Rl,kl

)−1 − I = Rl,kl
(I −Rkl

)−1.
12: end for
13: end procedure

Algorithm 2. Approximation of y = C−1
l b for l ≥ 1 and y = U−1

0 b.

1: procedure RecursiveSolve(l, b)
2: if l = L− 1 then
3: return y = U−1

CL−1
L−1
CL−1

b
4: else
5: Split b = (bH1 , b

H
2)H conformingly with the blocking of Cl

6: Compute z1 = U−1
Bl+1

L−1
Bl+1

b1
7: Compute z2 = b2 − El+1z1
8: if 1 ≤ l < L− 1 then
9: Compute w2 = Wl+1,kl+1

Hl+1W
H
l+1,kl+1

z2
10: Compute y2 = RecursiveSolve(l + 1, z2 + w2)
11: Compute y1 = z1 − U−1

Bl+1
L−1
Bl+1

Fl+1y2
12: else
13: Solve the system S0y2 = z2 with S̃−1

0 as a right preconditioner
14: Compute y1 = U−1

B0
L−1
B0

(b1 − F0y2)
15: end if
16: return y = (yH1 , y

H
2)H

17: end if
18: end procedure

LOW RANK PRECONDITIONER FOR INDEFINITE SYSTEMS A9

Similarly to MSLR the HID ordering gives rise to Bl matrices that are block-284

diagonal in structure, and so all of these blocks can be factored in parallel. Further-285

more, the triangular solves associated with Bl can also be done in parallel for each286

block. In addition, while Algorithm 2 generally provides an accurate approximation to287

C−1
l , we must point out that due to the presence of the inner solve at level l = 0 (Line288

13 of Algorithm 2), GMSLR is (potentially) more expensive per iteration than MSLR.289

This expense can be lessened somewhat by the fact that the inner solves typically can290

only require 1–2 digits of accuracy without radically affecting the convergence rate of291

the outer solve.292

5.3. Computational and memory complexity of the preconditioner. Let293

mem(ILU(Bl)) denote the memory cost associated with the storage of the incomplete294

factorization of Bl. Then the total memory cost µ
(L)
GMSLR of the GMSLR precondi-295

tioner using L levels is296

µ
(L)
GMSLR =

(
L−1∑

l=0

[
mem(ILU(Bl)) + max

{
2slkl + k2l , 3s

2
l

}]
)

+ mem(ILU(CL−1)),297

where the second term inside the summation accounts for the memory cost associated298

with the partial Schur decompositions of order 1 ≤ kl ≤ sl at levels 0 ≤ l ≤ L−1, and299

sl denotes the number of interface variables at level l, i.e., the leading dimension of300

each Cl. For simplicity, we treat the upper triangular matrix Hl,kl
as a dense matrix.301

In the case where the incomplete factorization of matrices Bl, l = 0, . . . , L − 1, and302

CL−1 are obtained by a thresholded version of ILU, with a maximum number of303

nonzero entries per row equal to τ , the above memory cost is bounded by304

µ
(L)
GMSLR ≤

(
L−1∑

l=0

[
2τdl + max

{
2slkl + k2l , 3s

2
l

}]
)

+ 2τsL−1,305

where dl denotes the leading dimension of Bl.306

To obtain an estimate of the computational cost to apply the GMSLR precondi-307

tioner at level l, we need to consider the computational cost associated with all levels308

l + 1, . . . , L − 1. In particular, let trisol(ILU(Bl)) and trisol(ILU(CL−1)) denote the309

cost of the triangular solves with Bl and CL−1, respectively, and let γ
(L−1)
GMSLR denote310

the cost associated with level l = L − 1. At level l = L − 2, the cost to apply the311

GMSLR preconditioner is equal to the sum of the cost to apply the preconditioner at312

level l+ 1 = L− 1 and the cost 2×trisol(ILU(BL−2)) + O(sL−2kL−2). Continuing in313

the same spirit, we finally get that the cost to apply the GMSLR preconditioner at314

level l, γ
(l)
GMSLR, is equal to315

γ
(l)
GMSLR = γ

(l+1)
GMSLR + 2× trisol(ILU(Bl)) +O(slkl), l = 0, . . . , L− 2,316

where317

γ
(L−1)
GMSLR = trisol(ILU(CL−1)) + 2× trisol(ILU(BL−1)) +O(sL−1kL−1).318

6. Eigenvalue analysis. This section studies the spectra of linear systems pre-319

conditioned by GMSLR. We only consider a 2-level decomposition since the recursive320

nature of both algorithms makes the analysis difficult. In what follows, let B̃0 denote321

an approximation to B0 and S̃0 the GMSLR approximation to the Schur complement322

A10 DILLON, KALANTZIS, XI, AND SAAD

S0 = C0 −E0B
−1
0 F0, respectively. GMSLR starts with a 2× 2 block partition of the323

original matrix A, i.e.,324

(6.1) A0 =

(
B0 F0

E0 C0

)
,325

where B0 is nB × nB and C0 is s× s.326

As was already seen, the GMSLR preconditioner is based on the block-LU fac-327

torization of (6.1), so at level 0 we have328

A0 =

(
B0 F0

E0 C0

)
=

(
I 0

E0B
−1
0 I

)(
B0 F0

0 S0

)
= L0U0,329

and the preconditioner Ũ−1
0 is330

Ũ−1
0 =

(
B̃−1

0 0
0 I

)(
I −F0

0 I

)(
I 0

0 S̃−1
0

)
.331

A simple calculation shows that332

(6.2) A0Ũ−1
0 =

(
B0B̃

−1
0 (I −B0B̃

−1
0)F0S̃

−1
0

E0B̃
−1
0 S0S̃

−1
0

)
.333

If we assume that B̃0 = B0, then (6.2) simplifies to334

(6.3) A0Ũ−1
0 =

(
I 0

E0B
−1
0 S0S̃

−1
0

)
,335

which has eigenvalues λ(A0Ũ−1
0) = {1, λ(S0S̃

−1
0)}.336

Convergence will be rapid if the eigenvalues of S0S̃
−1
0 are also close to 1. To339

illustrate the influence the rank has on convergence, we show in Figure 6.1 the spectra340

of S0S̃
−1
0 for a small test problem. Here A is the discretized shifted Laplacian operator341

−∆u − cu = f with c = 0.0 (left figure) and c = 0.5 (right figure) and homogeneous342

Dirichlet boundary conditions. For reference, when c = 0.5, this 8000 × 8000 matrix343

has 35 negative eigenvalues. This is a matrix selected for illustrative purposes, so we344

use two levels with equal ranks k0, k1 and compute the exact LU factorization of B0.345

As the ranks k0, k1 increase, the real part of the eigenvalues of S0S̃
−1
0 clusters more346

tightly around 1.347

0.4 0.6 0.8 1 1.2

k
0
=

2

Spectra of S0S̃0
−1

0.4 0.6 0.8 1 1.2

k
0
=

5

0.6 0.7 0.8 0.9 1 1.1

k
0
=

10

0.7 0.8 0.9 1 1.1

ℜe λ(S0S̃0
−1
)

k
0
=

20

-1 -0.5 0 0.5 1 1.5

k
0
=

2

Spectra of S0S̃0
−1

0 0.5 1 1.5

k
0
=

5

0.2 0.4 0.6 0.8 1 1.2

k
0
=

10

0.6 0.7 0.8 0.9 1 1.1

ℜe λ(S0S̃0
−1
)

k
0
=

20

Fig. 6.1. The spectrum of S0S̃
−1
0 for different values of k0 ≡ k1 (L = 2). Left: c = 0.0. Right:

c = 0.5.
337

338

LOW RANK PRECONDITIONER FOR INDEFINITE SYSTEMS A11

7. Numerical experiments. All experiments were run on a single node of the348

Mesabi Linux cluster at the Minnesota Supercomputing Institute. This node has a349

memory of 64 GBs and consists of two sockets each having a twelve core 2.5 GHz Intel350

Haswell processor. The GMSLR preconditioner was written in C++ and compiled351

by Intel’s C++ compiler using −O3 optimization. Simple thread-level parallelism was352

achieved with OpenMP with a maximum of 24 threads. The Bl blocks are factored by353

the ILUT routine from ITSOL. The Intel Math Kernel Library (MKL) was used for354

the BLAS and LAPACK routines. We use flexible GMRES [40] with a fixed restart355

size of 40 as the outer solver, denoted by FGMRES(40). The inner solve in Step 14356

of Algorithm 2 is also done with FGMRES. Unless otherwise noted, we follow the357

methodology of [32, 41, 46] where the right-hand side vector b is given by Ae = b,358

where e is the vector of all ones.359

The HID ordering was obtained by the function PartGraphRecursive from the360

METIS [30] package. The diagonal blocks of each Bl, Cl, l = 0, . . . , L − 1, were361

reordered using the approximate minimum degree (AMD) ordering [15, 16] in order362

to reduce the fill-in generated by their ILU factorizations. In our experiments the363

reported preconditioner construction time comes from the factorization of the Bl364

blocks and the computation of the low rank correction matrices. The reordering time365

is regarded as preprocessing and is therefore not reported. Similarly, the iteration366

time is the combined time spent on the inner and outer solves.367

The parameters we are most interested in varying are the number L of levels in368

the HID and the maximum rank used in the low rank correction, i.e., the number of369

steps of Arnoldi’s method (see section 4.2), denoted by rk. In particular we set kl370

in (4.13) to be equal to rk for any l = 0, . . . , L − 1, and thus all Arnoldi vectors are371

included in the low rank correction terms.372

We use the following notation in the results that follow:373

• fill = nnz(prec)
nnz(A) , where nnz denotes the number of nonzero entries of the input374

matrix;375

• p-t: wall clock time to build the preconditioner (in seconds);376

• its: number of outer iterations of preconditioned FGMRES(40) required for377

‖rk‖2 < 10−6. We use “F” to indicate that FGMRES(40) did not converge378

after 500 iterations;379

• i-t: wall clock time for the iteration phase of the solver;380

• rk: max rank used in building the low rank corrections.381

The value of nnz(prec) is the sum of the nonzero entries associated with the382

incomplete factorizations (ILU) and low rank correction (LRC) terms. These quan-383

tities are computed as
∑L−1

l=0 [(nnz(UBl
) + nnz(LBl

)] +
(
nnz(UCL−1

) + nnz(LCL−1
)
)

384

for ILU and
∑L−1

l=0

[
2slrk + rk2

]
for LRC, respectively.385

7.1. Problem 1. We begin our tests with the symmetric indefinite problem386

−∆u− cu = f in Ω,387

u = 0 on ∂Ω,(7.1)388

where Ω = (0, 1)3. The discretization is via finite differences with the standard 7-point389

stencil in three dimensions. This test problem is useful for testing robustness with390

respect to definiteness. For reference, GMRES preconditioned by standard AMG fails391

to converge when applied to (7.1) with even a small positive shift on a 32×32 regular392

mesh.393

7.1.1. Varying the number of levels. First, we study the effect of adding402

more levels to the preconditioner. We solve (7.1) with c > 0 in order to make the403

problem indefinite. In the cases where c > 0, we shift the diescretized Laplacian404

operator by sI, where s = h2c for mesh size h. For this first example, we set s = 0.5.405

A12 DILLON, KALANTZIS, XI, AND SAAD

Table 7.1394

The fill factor and iteration counts for solving (7.1) with s = 0.5 on a 323 grid with the
FGMRES-GMSLR method. Here, the maximum rank for the LRC matrices was fixed at 50.

395

396

L ILU fill LRC fill fill p-t i-t its
2 34.61 .23 34.84 5.16 1.25 16
3 21.03 .68 21.71 .986 2.69 16
4 15.64 1.35 16.99 .382 1.03 12
5 8.69 2.46 11.15 .169 .97 19
6 5.56 3.96 9.52 .172 .95 17

The associated coefficient matrix has 163 negative eigenvalues. The maximum rank406

was fixed at 50. By Table 7.1 we can see that, as L grows larger, the ILU fill factor407

decreases monotonically while the low rank correction fill factor increases monoton-408

ically. The optimal number of levels occurs when these two quantities are roughly409

equal. For this particular example, we pick Lopt = 6 as it strikes the right balance of410

fill, iteration count, and total computational time. Note that as L increases, so does411

the number of interface variables at the root level, s0. This can be verified immedi-412

ately by looking at Table 7.2 where we list s0 for all values of L from L = 2 to L = 6.413

Figure 7.1 plots the number of inner iterations performed by GMSLR as a function414

of the rank rk for different values of the drop tolerance (denoted by tol) in the ILU415

factorizations.416

Table 7.2397

Comparison between GMSLR with only U−1
0 and GMSLR with L−1

0 and U−1
0 on (7.1) with

s = 0.5 on a 323 grid. The maximum rank was fixed at 50.
398

399

GMSLR - U−1
0 only GMSLR - U−1

0 L−1
0

L s0 p-t i-t its p-t i-t its
2 1,024 5.16 1.25 16 5.15 3.59 47
3 2,016 .986 2.69 16 1.01 5.24 37
4 2,977 .382 1.03 12 .391 2.88 34
5 4,955 .169 .97 19 .181 1.49 27
6 6,699 .172 .95 17 .176 1.43 24

0 50 100 150 200 250

10
1

10
2

rk

In
n

e
r

it
e

ra
ti
o

n
s

tol=1e−3

tol=1e−5

tol=1e−7

tol=1e−9

Fig. 7.1. Number of inner iterations in GMSLR as a function of rk for different values of the
drop tolerance tol in the incomplete factorizations of Bl and CL−1. We set L = 2.

400

401

LOW RANK PRECONDITIONER FOR INDEFINITE SYSTEMS A13

Finally, recall that we could have used the inexact version of (3.4) instead of417

(3.2). For SPD problems there is not a significant difference in the results obtained418

by either preconditioner. However, as shown in Table 7.2, for an indefinite problem419

such as (7.1) with s = 0.5, (3.2) performs better. The likely explanation for this420

behavior is that (3.2) involves fewer solves with the Bl matrices which are highly421

indefinite and therefore admit poor ILU factorizations.422

7.1.2. Varying the maximum rank in the low rank corrections. Next, we423

keep the number of levels fixed but increase the maximum rank. We again solve (7.1)424

with s = 0.5 discretized on a 323 regular grid. The ILU fill factor is constant because425

we are keeping the number of levels fixed at 6. The fill factor from the low rank426

corrections increases at an almost constant rate. Increasing the maximum rank has427

the unfortunate effect of increasing the fill factor and the preconditioner construction428

time. As we see in Table 7.3, the effect of increasing the rank (at least for this model429

problem) is difficult to predict. As a general rule, it seems as though a large maximum430

rank is unavoidable for highly indefinite problems.431

7.1.3. Increasingly indefinite problems. The model problem (7.1) becomes438

significantly more difficult to solve as s increases. Here, we increase s from 0 to439

1 while tuning the maximum rank and number of levels to compensate for solving440

this increasingly difficult problem. We report the results that give the best balance441

between iteration count and fill in Table 7.4. The fill factor increases dramatically for442

two reasons: first, we must increase the rank of the low rank correction, and second,443

we must keep the number of levels low, which, as was observed in section 7.1.1, leads444

to increased fill-in for the same drop tolerance. If the rank is too low or the number of445

levels is too high, FGMRES(40) simply will not converge. Recall that the construction446

of the low rank correction is based on finding approximate eigenvalues of the matrix447

ElU
−1
Bl
L−1
Bl
FlC

−1
l using Arnoldi’s method. When B0 is indefinite, as is the case here,448

the eigenvalues we seek get pushed deeper inside the spectrum; i.e., they become449

interior eigenvalues. Since the Arnoldi process does a poorer job for these interior450

Table 7.3432

Iteration counts for solving (7.1) with s = 0.5 on a 323 grid with the FGMRES-GMSLR method.
The number of levels was fixed at 6.

433

434

rk ILU fill LRC fill fill p-t i-t its
20 5.56 1.58 7.14 .091 1.34 24
30 5.56 2.37 7.93 .118 1.14 19
40 5.56 3.17 8.73 .139 1.04 18
50 5.56 3.96 9.52 .174 .972 17
60 5.56 4.75 10.31 .208 1.29 22
70 5.56 5.24 10.8 .221 1.35 24
80 5.56 5.99 11.55 .291 .968 15

Table 7.4435

Results of solving symmetric linear systems with increasing shift values s on a 323 regular mesh
with GMSLR.

436

437

s L max rank fill p-t i-t its
0 8 20 5.89 .109 .068 3

.25 6 30 7.59 .117 .449 8
.5 6 50 9.52 .174 .973 17
.75 5 80 12.77 .291 .826 13
1.0 5 120 13.73 .406 1.87 29

A14 DILLON, KALANTZIS, XI, AND SAAD

eigenvalues than it does for extreme ones, we are forced to take more Arnoldi steps451

in order to approximate them.452

7.2. Problem 2. The second problem of interest is nonsymmetric:453

−∆u− α · ∇u− cu = f in Ω,454

u = 0 on ∂Ω,(7.2)455

where Ω = (0, 1)3, α ∈ R3. This problem is simply a shifted convection-diffusion456

equation, again discretized by the 7-point finite difference stencil. As before we shift457

the discretized convection-diffusion operator by sI where s = h2c.458

7.2.1. Varying the number of levels. In this next set of experiments we fix467

α = [.1, .1, .1] and solve (7.2) in three dimensions with no shift and then with a shift of468

s = .25. As before, we start by increasing the number of levels. The results of the first469

problem with a maximum rank of 20 are in Table 7.5. These results are comparable470

to those obtained from the SPD problem (7.1) with s = 0; i.e., for this problem, the471

convergence rate is not adversely affected by the loss of symmetry.472

Next, we solve (7.2) with s = .25. The shift significantly increases the number473

of eigenvalues with negative real parts, so we increase the maximum rank to 50. The474

results can be found in Table 7.6. It is interesting to note that the fill from the low475

rank correction is almost exactly the same as in Table 7.1. This is due to the fact476

that both problems used a maximum rank of 50 to build the low rank corrections.477

7.3. Problem 3. The third model problem is a Helmholtz equation of the form478

(7.3)

(
−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω).479

In this formulation, ∆ is the Laplacian operator, ω the angular frequency, v(x)480

the velocity field, and s(x, ω) is the external forcing function with corresponding481

Table 7.5459

The fill factor and iteration counts for solving (7.2) with no shift and α = [.1, .1, .1] on a 323

grid with the FGMRES-GMSLR method. Here, the maximum rank for the LRC matrices was fixed
at 20.

460

461

462

L ILU fill LRC fill fill p-t i-t its
2 11.69 .092 11.78 .505 .159 7
3 10.13 .272 10.4 .234 .079 6
4 8.8 .539 9.34 .126 .044 5
5 6.47 .983 7.46 .09 .041 5
6 4.89 1.58 6.47 .086 .074 4
7 3.8 2.34 6.14 .092 .066 4
8 2.53 3.35 5.88 .116 .066 3

Table 7.6463

The fill factor and iteration counts for solving (7.2) with s = .25 and α = [.1, .1, .1] on a 323

grid with the FGMRES-GMSLR method. Here, the maximum rank for the LRC matrices was fixed
at 50.

464

465

466

L ILU fill LRC fill fill p-t i-t its
2 24.11 .23 24.34 2.03 .88 16
3 15.44 .681 16.12 .58 .61 13
4 11.64 1.35 12.99 .237 .381 12
5 7.25 2.46 9.71 .149 .91 19
6 5.16 3.96 9.12 .167 .741 13
7 3.91 5.86 9.77 .214 1.00 14
8 2.56 8.39 10.95 .288 4.54 53

LOW RANK PRECONDITIONER FOR INDEFINITE SYSTEMS A15

Table 7.7490

Results from solving (7.3) on a sequence of 3D meshes with GMSLR. All problems have q = 8
points per wavelength. The second set of results is with a small complex shift added to the B`

matrices.

491

492

493

GMSLR - no shift GMSLR w/ complex shift
ω/(2π) n = N3 L rk fill p-t i-t its fill p-t i-t its

2.5 203 5 16 3.79 .063 .318 14 3.56 .062 .205 17

3 303 6 16 5.18 .156 .308 13 4.72 .135 .547 16

5 403 7 16 6.19 .282 1.94 57 5.43 .251 .556 17

6 503 7 16 8.16 .768 3.52 54 6.64 0.54 1.3 21

8 603 8 16 7.73 .867 29.53 F 6.52 0.73 2.05 21

10 803 9 16 7.85 1.57 65.57 F 6.64 1.4 6.31 28

time-harmonic wave field solution u(x, ω). The computational domain is the unit482

cube Ω = (0, 1)3 where we again use the 7-point finite difference discretization on a483

regular mesh. The perfectly matched layer (PML) boundary condition is used on all484

faces of Ω. The resulting linear systems are complex non-Hermitian. If we assume485

that the mean of v(x) is 1 in (7.3), then the wave number is ω/(2π) and λ = 2π/ω is486

the wavelength. The number of grid points in each dimension is N = qω/(2π), where487

q is the number of points per wavelength. As a result, the discretized system is of size488

n = N3 ×N3.489

We test the performance of the GMSLR preconditioner on six cubes, setting q = 8,494

and report the results in Table 7.7. Since q is fixed, an increase in the wave number495

means an increase in N , so the higher frequency problems lead to much larger linear496

systems. In these experiments, we set the inner solve tolerance to 10−2 or a maximum497

of 10 iterations. Results reported under the legend “GMSLR - no shift” stand for the498

regular GMSLR preconditioner. Results reported under the legend “GMSLR w/499

complex shift” stand for runs where the GMSLR preconditioner was built by first500

shifting Bl by σ =
(∑dl

j=1(Bl)jj/dl
)
∗ .05∗ i. Without a complex shift, these problems501

can be much more difficult, especially as the matrix size grows. Indeed, for the last two502

examples no convergence was achieved after 300 outer iterations. On the other hand,503

the shift benefits all test problems as it allows for an increased number of levels (and504

thus less fill-in introduced by ILU) while also keeping the number of outer iterations505

relatively small (the number of outer iterations only increased from 17 to 28 as the506

matrix size grew from 203 to 803).507

7.4. General sparse matrices. To further illustrate the robustness of the GM-508

SLR preconditioner, we tested it on several large matrices from the SuiteSparse Matrix509

Collection [17]. These matrices come from a wide range of application areas, not just510

PDEs. As a benchmark, we also tested ILUT for these nonsymmetric matrices. Infor-511

mation about the matrices is shown in Table 7.8. Table 7.9 shows the results of these512

experiments. The ILUT parameters were chosen such that the fill of both methods513

was comparable.514

Results are shown in Table 7.9, where F indicates a failure to converge in 500525

iterations. As can be seen, for these problems, GMSLR is superior to ILUT. It is526

worth adding that ILUT is a highly sequential preconditioner both in its construction527

and its application. In contrast, GMSLR is by design a domain decomposition-type528

preconditioner that offers potential for excellent parallelism.529

Figure 7.2 plots the value of i-t and p-t as both L and the drop tolerance “tol”530

of the incomplete factorizations are varied for matrices “barrier2-1” and “offshore.”531

In agreement with the results reported so far, an increase in the value of L reduces532

A16 DILLON, KALANTZIS, XI, AND SAAD

Table 7.8515

Set of test matrices from the SuiteSparse Matrix Collection where nnz is the number of nonzero
entries in the matrix.

516

517

Matrix Order nnz SPD Origin
cbuckle 13,681 676,515 yes structural problem
epb2 25,228 175,027 no thermal problem
wang4 26,068 177,196 no semiconductor device problem

barrier2− 1 113,076 3,805,068 no semiconductor device problem
Cage12 130,228 2,032,536 no directed weighted graph

offshore 259,789 4,242,673 yes electromagnetics problem
CoupCons 416,800 22,322,336 no structural problem
AtmosModd 1,270,432 8,814,880 no atmospheric model
AtmosModL 1,489,752 10,319,760 no atmospheric model
Cage14 1,505,785 27,130,349 no directed weighted graph

Transport 1,602,111 23,500,731 no CFD problem

Table 7.9518

Comparison between GMSLR and ILUT preconditioners for solving the above problems. ILUT
parameters were chosen so that the fill factor was close to that of GMSLR. Both sets of tests use
the same reordered matrix.

519

520

521

Matrix
GMSLR ILUT

fill L rk p-t i-t its fill p-t i-t its
cbuckle 2.13 5 5 .22 .10 9 2.27 .38 .32 22
epb2 3.63 5 15 .23 .13 4 3.43 .98 .76 19
wang4 4.83 2 35 .14 .08 13 4.92 .45 .41 18

barrier2− 1 3.72 5 10 .60 1.91 6 3.69 44.19 14.32 F

Cage12 0.95 5 25 .23 .28 4 1.00 .24 .31 5
offshore 0.99 12 35 1.27 2.35 5 1.09 1.02 1.60 10
CoupCons 1.82 10 16 1.68 .64 5 1.64 17.49 2.03 23
AtmosModd 5.86 10 4 1.23 3.05 11 5.68 8.10 8.60 47
AtmosModL 5.81 11 4 1.67 2.12 7 6.03 11.35 6.37 30
Cage14 1.54 6 4 3.10 .89 4 1.57 5.09 0.70 4

Transport 2.52 11 4 1.85 7.45 23 2.59 27.91 59.7 116

2 3 4 5 6 7

10
0

10
1

barrier2−1

of levels (L)

T
im

e
 (

s
)

p−t, tol=1e−4

i−t, tol=1e−4

p−t, tol=1e−6

i−t, tol=1e−6

2 3 4 5 6 7

10
0

10
1

offshore

of levels (L)

T
im

e
 (

s
)

p−t, tol=1e−4

i−t, tol=1e−4

p−t, tol=1e−6

i−t, tol=1e−6

Fig. 7.2. Amount of time spent on building the GMSLR preconditioner and solving the linear
system as the number of levels L and the drop tolerance tol in the incomplete factorizations vary.
The rank rk was fixed to 10.

522

523

524

LOW RANK PRECONDITIONER FOR INDEFINITE SYSTEMS A17

the time to construct and apply the preconditioner. On the other hand, an increase533

in the value of L might also lead to a larger number of inner iterations necessary to534

achieve convergence and thus might lead to higher iteration times.535

8. Conclusion. The GMSLR preconditioner combines several ideas. First is the536

HID ordering method, which has a recursive multilevel structure. The (1, 1) block of537

each level of this structure is block diagonal, which means that solves with this block538

are easily parallelizable. Motivated by the block LU factorization of the reordered539

matrix, we use a block triangular preconditioner at the bottom level of the HID tree.540

For the other levels, we use approximate inverse factorizations exploiting a recursive541

relationship between the different levels. Finally, we approximate the inverse Schur542

complement at each level of the HID tree via a low rank correction technique.543

Because it is essentially an approximate inverse preconditioner, GMSLR is ca-544

pable of solving a wide range of highly indefinite problems that would be difficult545

to solve by standard methods such as ILU. The numerical experiments we showed546

confirm this. Additional benefits of GMSLR include its inherent parallelism and its547

fast construction.548

GMSLR is also promising for use in eigenvalue computations, especially in the549

context of rational filtering eigenvalue solvers where complex, indefinite linear systems550

need be solved [29, 47]. The factorization of these systems can be slow and costly551

for large 3D problems. We plan on investigating the use of Krylov subspace methods552

preconditioned by GMSLR to solve such systems. Among other objectives, we also553

plan to implement and publicly release a fully parallel, domain-decomposition based554

version of GMSLR.555

Acknowledgments. The authors would like to thank the Minnesota Supercom-556

puting Institute for the use of their extensive computing resources and the anonymous557

referees for their careful reading of this paper and helpful suggestions.558

REFERENCES559

[1] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue560

problem, Quart. Appl. Math., 9 (1951), pp. 17–29.561

[2] O. Axelsson and B. Polman, Block preconditioning and domain decomposition methods II,562

J. Comput. Appl. Math., 24 (1988), pp. 55–72.563

[3] Z. Bai and J. W. Demmel, On swapping diagonal blocks in real Schur form, Linear Algebra564

Appl., 186 (1993), pp. 75–95.565

[4] M. Bebendorf, Why finite element discretizations can be factored by triangular hierarchi-566

cal matrices, SIAM J. Numer. Anal., 45 (2007), pp. 1472–1494, https://doi.org/10.1137/567

060669747.568

[5] M. Bebendorf and T. Fischer, On the purely algebraic data-sparse approximation of the569

inverse and the triangular factors of sparse matrices, Numerical Linear Algebra Appl., 18570

(2011), pp. 105–122, http://doi.org/10.1002/nla.714.571

[6] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys.,572

182 (2002), pp. 418–477.573

[7] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta574

Numer., 14 (2005), pp. 1–137.575

[8] M. Benzi, D.B. Szyld, and A. Van Duin, Orderings for incomplete factorization precondi-576

tioning of nonsymmetric problems, SIAM J. Sci. Comput., 20 (1999), pp. 1652–1670.577

[9] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric linear578

systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.579

[10] D. Cai, E. Chow, Y. Saad, and Y. Xi, SMASH: Structured matrix approximation by sep-580

aration and hierarchy, Preprint ys-2016-10, University of Minnesota, Minneapolis, MN,581

2016.582

[11] E. Chow and Y. Saad, Approximate inverse techniques for block-partitioned matrices, SIAM583

J. Sci. Comput., 18 (1997), pp. 1657–1675.584

A18 DILLON, KALANTZIS, XI, AND SAAD

[12] E. Chow and Y. Saad, Experimental study of ILU preconditioners for indefinite matrices, J.585

Comput. Appl. Math., 86 (1997), pp. 387–414.586

[13] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations,587

SIAM J. Sci. Comput., 19 (1998), pp. 995–1023.588

[14] E. C. Cyr, J. N. Shadid, R. S. Tuminaro, R. P. Pawlowski, and L. Chacón, A new ap-589

proximate block factorization preconditioner for two-dimensional incompressible (reduced)590

resistive MHD, SIAM J. Sci. Comput., 35 (2013), pp. B701–B730.591

[15] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering592

algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.593

[16] P. R. Amestoy, T. A. Davis, and I. S. Duff, Algorithm 837: An approximate minimum594

degree ordering algorithm, ACM Trans. Math. Software, 30 (2004), pp. 381–388.595

[17] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.596

Math. Software, 38 (2011), 1.597

[18] H. Elman, V. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block precondition-598

ers based on approximate commutators, SIAM J. Sci. Comput., 27 (2006), pp. 1651–1668.599

[19] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers,600

Oxford University Press, Oxford, 2005.601

[20] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, A novel multigrid based preconditioner602

for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471–1492.603

[21] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10604

(1973), pp. 345–363.605

[22] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM606

J. Sci. Comput., 18 (1997), pp. 838–853.607

[23] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to608

H-matrices, Computing, 62 (1999), pp. 89–108.609

[24] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application610

to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.611

[25] P. Hénon and Y. Saad, A parallel multistage ILU factorization based on a hierarchical graph612

decomposition, SIAM J. Sci. Comput., 28 (2006), pp. 2266–2293.613

[26] V. E. Howle and R. C. Kirby, Block preconditioners for finite element discretization of614

incompressible flow with thermal convection, Numerical Linear Algebra Appl., 19 (2012),615

pp. 427–440.616

[27] V. E. Howle, R. C. Kirby, and G. Dillon, Block preconditioners for coupled fluids problems,617

SIAM J. Sci. Comput., 35 (2013), pp. S368–S385.618

[28] I. C. F. Ipsen, A note on preconditioning nonsymmetric matrices, SIAM J. Sci. Comput., 23619

(2001), pp. 1050–1051.620

[29] V. Kalantzis, Y. Xi, and Y. Saad, Beyond AMLS: Domain Decomposition with Rational621

Filtering, preprint, arXiv:1711.09487 [math.NA], 2017.622

[30] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular623

graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.624

[31] E.-J. Lee and J. Zhang, Hybrid reordering strategies for ILU preconditioning of indefinite625

sparse matrices, J. Appl. Math. Comput., 22 (2006), pp. 307–316.626

[32] R. Li and Y. Saad, Divide and conquer low-rank preconditioners for symmetric matrices,627

SIAM J. Sci. Comput., 35 (2013), pp. A2069–A2095.628

[33] R. Li and Y. Saad, GPU-accelerated preconditioned iterative linear solvers, J. Supercomput.,629

63 (2013), pp. 443–466.630

[34] R. Li, Y. Xi, and Y. Saad, Schur complement-based domain decomposition precon-631

ditioners with low-rank corrections, Numerical Linear Algebra Appl., 23 (2016),632

pp. 706–729.633

[35] M. Magolu Monga Made, R. Beauwens, and G. Warzee, Preconditioning of discrete634

Helmholtz operators perturbed by a diagonal complex matrix, Internat. J. Numer. Meth.635

Biomed. Eng., 16 (2000), pp. 801–817.636

[36] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differ-637

ential equations, Numerical Linear Algebra Appl., 18 (2011), pp. 1–40.638

[37] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite639

linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972.640

[38] D. Osei-Kuffour, R. Li, and Y. Saad, Matrix reordering using multilevel graph coarsening641

for ILU preconditioning, SIAM J. Sci. Comput., 37 (2015), pp. A391–419.642

[39] D. Osei-Kuffuor and Y. Saad, Preconditioning Helmholtz linear systems, Appl. Numer.643

Math., 60 (2010), pp. 420–431, http://doi.org/10.1016/j.apnum.2009.09.003.644

[40] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14645

(1993), pp. 461–469.646

LOW RANK PRECONDITIONER FOR INDEFINITE SYSTEMS A19

[41] Y. Saad, ILUM: A multi-elimination ILU preconditioner for general sparse matrices, SIAM647

J. Sci. Comput., 17 (1996), pp. 830–847.648

[42] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.649

[43] Y. Saad and B. Suchomel, ARMS: An algebraic recursive multilevel solver for general sparse650

linear systems, Numer. Linear Algebra Appl., 9 (2002), pp. 359–378.651

[44] G. Stewart, Algorithm 506: HQR3 and EXCHNG: Fortran subroutines for calculating and652

ordering the eigenvalues of a real upper Hessenberg matrix, ACM Trans. Math. Software,653

2 (1976), pp. 275–280.654

[45] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, Spectral analysis of the discrete Helmholtz655

operator preconditioned with a shifted Laplacian, SIAM J. Sci. Comput., 29 (2007),656

pp. 1942–1958.657

[46] Y. Xi, R. Li, and Y. Saad, An algebraic multilevel preconditioner with low-rank corrections658

for sparse symmetric matrices, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 235–259.659

[47] Y. Xi and Y. Saad, Computing partial spectra with least-squares rational filters, SIAM J. Sci.660

Comput., 38 (2016), pp. A3020–A3045, https://doi.org/10.1137/16M1061965.661

[48] Y. Xi and Y. Saad, A rational function preconditioner for indefinite sparse linear systems,662

SIAM J. Sci. Comput., 39 (2017), pp. A1145–A1167, https://doi.org/10.1137/16M1078409.663

[49] Y. Xi and J. Xia, On the stability of some hierarchical rank structured matrix algo-664

rithms, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1279–1303, https://doi.org/10.1137/665

15M1026195.666

[50] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and stable structured solvers for667

Toeplitz least squares via randomized sampling, SIAM J. Matrix Anal. Appl., 35 (2014),668

pp. 44–72.669

[51] J. Xia, S. Chandrasekaran, M. Gu, and X. Li, Fast algorithms for hierarchically semisepa-670

rable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.671

[52] J. Xia, Y. Xi, S. Cauley, and V. Balakrishnan, Fast sparse selected inversion, SIAM J.672

Matrix Anal. Appl., 36 (2015), pp. 1283–1314, https://doi.org/10.1137/14095755X.673

