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SUMMARY

This paper discusses techniques for computing a few selected eigenvalue-eigenvector pairs of large and
sparse symmetric matrices. A recently developed class of techniques to solve this type of problems is
based on integrating the matrix resolvent operator along a complex contour that encloses the interval
containing the eigenvalues of interest. This paper considers such contour integration techniques from a
domain decomposition viewpoint, and proposes two schemes. The first scheme can be seen as an extension of
domain decomposition linear system solvers in the framework of contour integration methods for eigenvalue
problems, such as FEAST. The second scheme focuses on integrating the resolvent operator primarily along
the interface region defined by adjacent subdomains. A parallel implementation of the proposed schemes is
described and results on distributed computing environments are reported. These results show that domain
decomposition approaches can lead to reduced runtimes and improved scalability.
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1. INTRODUCTION

A common approach for computing all eigenvalues located inside an interval [α, β] for a symmetric
matrix A is via a Rayleigh-Ritz (projection) process on a well-selected low-dimensional subspace
U . In an ideal situation, U spans an invariant subspace associated with the sought eigenvalues.

In this paper we consider techniques in which the subspace U is extracted via an approximation
of the spectral projector obtained by numerically integrating the resolvent (ζI −A)−1, where
ζ ∈ C, on a closed complex contour Γ that encloses the desired eigenvalues. The core of the
method is then to compute the action of the matrix contour integral

∫
Γ
(ζI −A)−1dζ on a set of

vectors [38, 44, 45, 49]. We focus on distributed computing environments, possibly with a large
number of processors, and study contour integration eigenvalue solvers (eigensolvers) from a
domain decomposition viewpoint [47, 50]. Domain decomposition techniques for the solution of
eigenvalue problems have been studied in the past, see for example [10, 11, 24, 34, 37], but to our
knowledge these methods have not yet been considered† within a contour integration framework.
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55455, USA. E-mail: kalan019@umn.edu
†This work supported jointly by NSF under awards CCF-1505970 and CCF-1510010, and by the Scientific Discovery
through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced
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Contour integration eigensolvers have mostly been associated with the use of sparse direct
solvers to solve the linear systems which arise from the numerical approximation of the contour
integral. This approach, however, is not always feasible due to the possible large amount of fill-
in in the triangular factors, e.g., when factorizing matrices that originate from discretizations of
3D computational domains. One of the goals of this paper is to fill part of the gap that exists
between contour integration approaches and the use of hybrid iterative solvers within this context
(see also [20]). In particular, we would like to accelerate iterative solutions of the linear systems
encountered in the FEAST algorithm, by utilizing domain decomposition preconditioners to solve
the resulting complex linear systems with multiple right-hand sides.

Even when direct solvers are the most practical way to solve the linear systems encountered in a
FEAST approach, domain decomposition based approaches can lead to faster and more scalable
computations. This will be illustrated by comparing the FEAST algorithm implemented with a
domain decomposition-based direct solver, and an implementation of FEAST that uses a standard
parallel sparse direct solver. Similar behavior was observed in [27] for using an application-specific
domain decomposition linear system solver in FEAST. In contrast, in this paper we consider domain
decomposition using algebraic partitionings obtained by a graph partitioner.

Domain decomposition type methods naturally lend themselves to parallelization in multi-core
and/or many-core environments. This paper discusses practical aspects of an implementation of
the proposed numerical schemes in distributed computing environments. Moreover, we consider
different levels of parallelism by combining distributed and shared memory computing. Finally,
we discuss a modified contour integration scheme which shares similarities with the work of Beyn
in [12] and approximates only certain parts of the contour integral of the matrix resolvent. This
approach leads to a numerical scheme that can be computationally more efficient than following the
standard approach of numerically integrating the entire resolvent, especially when the linear system
solutions associated with the interior variables of the subdomains are relatively expensive.

The organization of this paper is as follows. In Section 2 we describe the main idea behind contour
integration eigensolvers, and the FEAST algorithm in particular. In Section 3 we describe the
domain decomposition framework. In Section 4 we present two computational schemes within the
context of domain decomposition. Section 5 focuses on the solution of the linear systems during the
numerical integration phase, and discusses the use of domain decomposition-based preconditioners,
as well as their implementation in distributed computing environments. In Section 6 we present
computational experiments. Finally, in Section 7, we state a few concluding remarks.

2. CONTOUR INTEGRATION-BASED EIGENVALUE SOLVERS

For simplicity, throughout this paper we will assume that the sought eigenpairs of A lie inside the
interval [−1, 1]. When [α, β] 6= [−1, 1], we will be implicitly mapping [α, β] to [−1, 1] by

A := (A− cI)/e, c =
α+ β

2
, e =

β − α
2

. (1)

Let A have r eigenvalues, denoted by λ1,. . ., λr, located inside the interval [−1, 1], and let
X = [x(1), . . . , x(r)] be the n× r orthonormal matrix formed by the corresponding (normalized)
eigenvectors. Then, the spectral projector P = x(1)(x(1))T + . . .+ x(r)(x(r))T = XXT can be
expressed via the Cauchy integral [40]:

P =
1

2iπ

∫

Γ

(ζI −A)−1dζ, (2)

where Γ is a smooth, counter-clockwise oriented curve (e.g., a circle) that encloses only the sought
eigenvalues λ1, . . .,λr. The invariant subspace associated with the eigenvectors x(1),. . ., x(r) can
be then captured by multiplying P by some matrix V ∈ Rn×r̂ such that V TX has rank r. The
span of PV can then exploited by a Rayleigh-Ritz projection procedure to extract eigenpairs
(λ1, x

(1)), . . . , (λr, x
(r)).

(2010)
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DOMAIN DECOMPOSITION CONTOUR INTEGRATION EIGENSOLVERS 3

In practice, the spectral projector in (2) is approximated by numerical quadrature. A basis of the
approximate invariant subspace then takes the form:

PV ≈ P̃V =

2Nc∑

j=1

ωj(ζjI −A)−1V, (3)

where {ζj , ωj}1≤j≤2Nc
are the quadrature node-weight pairs of the quadrature rule. The numerical

integration scheme in (3) approximates the exact spectral projector P in (2) by the approximate
projector P̃ = −ρ(A), where

ρ(ζ) =

2Nc∑

j=1

ωj
ζ − ζj

. (4)

The rational function ρ(ζ) can be interpreted as a spectral filter function which maps the eigenvalues
λ1, λ2, . . . , λn of A to the eigenvalues ρ(λ1), ρ(λ2), . . ., ρ(λn) of ρ(A).

The accuracy of the approximate eigenpairs computed by a Rayleigh-Ritz projection on the
subspace created by (3) can be improved by repeating the procedure in (3), using the most recent
approximate eigenvectors as the new matrix V to multiply P̃ . If direct solvers are used to solve
the complex linear systems in (3), this approach essentially amounts to Subspace Iteration with
the matrix A replaced by ρ(A), i.e., the FEAST package [27, 28, 38, 49]; see also [3, 29, 31, 53].
It is also possible to consider contour integrals of other rational functions, e.g., the scalar function
u∗(ζI −A)−1v, with u, v, ∈ Cn, as proposed by Sakurai and Sugiura (SS) [5,44,45]. The poles of
this scalar function are the eigenvalues of A. See also [6] for a pole-finding eigenvalue solver based
on rational interpolation that exploits real arithmetic only, and [8, 9, 12] for applications of contour
integration to the solution of nonlinear eigenvalue problems.

3. THE DOMAIN DECOMPOSITION FRAMEWORK

Throughout this paper, we assume a non-overlapping p-way partitioning of the adjacency graph
of A, obtained by a graph partitioner [26, 35]. Each vertex is an equation-unknown pair (equation
number i and unknown number i) and the partitioner subdivides the vertex set into p non-intersecting
subsets. After partitioning, we can identify three different types of unknowns: (1) interior unknowns
that are coupled only with local equations; (2) local interface unknowns that are coupled with both
non-local (external) and local equations; and (3) external interface unknowns that belong to other
subdomains and are coupled with local interface variables. Within the ith subdomain i = 1, . . . , p, a
local reordering is applied in which interior points are listed before the interface ones.

With this, the local piece of an eigenvector x of A residing in the ith subdomain, xi, can be split
into two parts: the subvector ui ∈ Rdi of internal components followed by the subvector yi ∈ Rsi of
local interface components, where di denotes the number of interior variables and si the number of
interface variables of the ith subdomain, i = 1, . . . , p. If we stack all interior variables u1, u2, · · · , up
into a vector u, in this order, and reorder the equations so that the ui’s are listed first followed by
the yi’s, we obtain a reordered global eigenvalue problem that has the following form:




B1 E1

B2 E2

. . .
...

Bp Ep
ET1 ET2 . . . ETp C




︸ ︷︷ ︸
PAPT




u1

u2

...
up
y




= λ




u1

u2

...
up
y




, (5)

where Bi ∈ Rdi×di represents the couplings between the interior variables of subdomain i,
Ei ∈ Rdi×s denotes the matrix that maps all interface variables to the interior variables of
subdomain i, and C ∈ Rs×s denotes the matrix that represents the couplings between the interface

(2010)
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Figure 1. An example of a 2D Laplacian matrix reordered using p = 4 subdomains. Local (left) and global
(right) viewpoints.

variables, with s = s1 + . . .+ sp (we also set d = d1 + . . .+ dp). The matrix Ei has the form
Ei = [0di,`i , Êi, 0di,νi ], where `i =

∑j<i
j=1 sj , νi =

∑j=p
j>i sj , and 0χ,ψ denotes the zero matrix of

size χ× ψ. Figure 1 illustrates the above reordering for a 2D Laplacian matrix using p = 4
subdomains.

The coefficient matrix of the system (5) can be also written in a more compact form as

A =

(
B E
ET C

)
, (6)

where we kept the original symbol A for the permuted matrix as well. For the rest of this paper we
will assume that the matrix A is represented as in (5), or, equivalently, (6).

4. CONTOUR INTEGRATION IN THE DOMAIN DECOMPOSITION FRAMEWORK

In this section we present two numerical schemes that utilize contour integration approaches from a
domain decomposition perspective. Both schemes start with the expression of the resolvent operator
(ζI −A)−1 within the domain decomposition framework.

4.1. Full integration of the matrix resolvent

For ζ ∈ C consider the complex shifted matrix A− ζI written through its block LU factorization
[16]:

A− ζI =

(
I 0

ET (B − ζI)−1 I

)(
B − ζI E

0 S(ζ)

)
, (7)

where
S(ζ) = C − ζI − ET (B − ζI)−1E (8)

is a matrix-valued rational function known as the Schur complement matrix. Then, the negated
resolvent operator −(ζI −A)−1 = (A− ζI)−1 can be expressed through the identity

(A− ζI)−1 =

(
(B − ζI)−1 −(B − ζI)−1ES(ζ)−1

0 S(ζ)−1

)(
I 0

−ET (B − ζI)−1 I

)
, (9)

where both B − ζI and S(ζ) are assumed to be non-singular (this assumption is trivially satisfied
for any complex ζ with non-zero imaginary part).

Multiplying the two block triangular matrices in (9), and defining F (ζ) = (B − ζI)−1E, we get:

(A− ζI)−1 =

(
(B − ζI)−1 + F (ζ)S(ζ)−1F (ζ)T −F (ζ)S(ζ)−1

−S(ζ)−1F (ζ)T S(ζ)−1

)
. (10)

(2010)
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Let now Γ be a counter-clockwise oriented smooth Jordan curve, e.g., a circle, that encloses only
the eigenvalues of A inside [−1, 1], and let P denote the associated spectral projector defined in (2).
Then, P can be written in a 2× 2 block form, by integrating each block of (A− ζI)−1 separately:

P =
−1

2iπ

∫

Γ

(A− ζI)−1dζ ≡
(
H −W
−WT G

)
(11)

with 



H =
−1

2iπ

∫
Γ
[(B − ζI)−1 + F (ζ)S(ζ)−1F (ζ)T ]dζ

G =
−1

2iπ

∫
Γ
S(ζ)−1dζ

W =
−1

2iπ

∫
Γ
F (ζ)S(ζ)−1dζ.

(12)

In order to extract an eigenspace from the expression of P in (11), we consider the product PV ,
where V is a matrix with r̂ ≥ r columns, written as

P
(
Vu

Vs

)
=

(
HVu −WVs

−WTVu + GVs

)
≡
(
Zu

Zs

)
, (13)

where V = [V Tu , V
T
s ]T , and Vu ∈ Rd×r̂, Vs ∈ Rs×r̂ are the parts of V that correspond to the interior

and interface variables, respectively. We finally get



Zu =

−1

2iπ

∫
Γ
(B − ζI)−1Vudζ −

−1

2iπ

∫
Γ
F (ζ)S(ζ)−1[Vs − F (ζ)TVu]dζ

Zs =
−1

2iπ

∫
Γ
S(ζ)−1[Vs − F (ζ)TVu]dζ.

(14)

Assuming that V ∈ Rn×r̂ is chosen such that V TX has rank r, (14) captures the exact invariant
subspace of A associated with the sought eigenvalues, and Z ≡ PV can be exploited in a Rayleigh-
Ritz projection to recover the actual eigenpairs of A. Because the above discussed scheme considers
all blocks of P , we will refer to it as “Domain Decomposition Full Projector” (DD-FP). In the
following, we summarize the practical details of the DD-FP scheme.

4.1.1. Practical aspects of the DD-FP scheme In practice, the contour integrals in (14) will have to
be approximated numerically. Once a quadrature rule is selected, with quadrature nodes and weights
{ζj , ωj}, j = 1, . . . , 2Nc, (14) is approximated by the following summations:

Z̃u = −
2Nc∑

j=1

ωj(B − ζjI)−1Vu +

2Nc∑

j=1

ωjF (ζj)S(ζj)
−1[Vs − F (ζj)

TVu], (15)

Z̃s = −
2Nc∑

j=1

ωjS(ζj)
−1[Vs − F (ζj)

TVu]. (16)

The numerical integration can be performed by one of the available quadrature rules, e.g., the Gauss-
Legendre [38] or the trapezoidal [44] rules. Since the eigenvalues of A are real, using a rule in
which‡ the quadrature nodes appear in conjugate pairs, i.e., ζj = ζj+Nc , j = 1, . . . , Nc, reduces the
cost of the numerical approximation by a factor of two, since

B − ζjI = B − ζj+Nc
I, S(ζj) = S(ζj+Nc

), j = 1, . . . , Nc.

Viewing contour integration as a form of rational filtering, additional rational filters become
possible, e.g., Zolotarev rational filters [22], or least-squares filters [52], however, we do not explore
these options in this paper.

‡We assume here that none of the quadrature nodes lies on the real axis

(2010)
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For each quadrature node ζj , j = 1, . . . , Nc, and each column in V , we must solve two linear
systems with B − ζjI and one linear system with S(ζj). The calculation takes four steps that
accumulate the sums (15)-(16) into Z̃u, Z̃s, and is shown in Algorithm 4.1:

ALGORITHM 4.1
DD-FP

0. Start with random V ∈ Rn×r̂ and set Z̃ = [Z̃Tu , Z̃
T
s ]T = 0

1. Do until convergence
2. For j = 1, . . . , Nc:
3. Wu := (B − ζjI)−1Vu
4. Ws := Vs − ETWu

5. Ws := S(ζj)
−1Ws, Z̃s := Z̃s −<e(ωjWs)

6. Wu := Wu − (B − ζjI)−1EWs, Z̃u := Z̃u −<e(ωjWu)
7. End
8. Rayleigh-Ritz: solve the eigenvalue problem Z̃TAZ̃Q = Z̃T Z̃QΘ

-. If not satisfied, repeat with Vu = Z̃uQ, Vs = Z̃sQ
9. EndDo

The factorization of each matrix B − ζjI, j = 1, . . . , Nc is decoupled into factorizations of the
matrices Bi − ζjI, i = 1, . . . , p, each one being local to the ith subdomain. Moreover, only the real
parts of Z̃s and Z̃u need be retained. Step 8 of Algorithm 4.1 extracts the approximate eigenpairs
of A by a Rayleigh-Ritz projection, and also verifies whether all eigenpairs inside [−1, 1] are
approximated up to a sufficient accuracy (this part is omitted from the description of the algorithm).
If not satisfied with the accuracy achieved, we can repeat steps 2-7 using the current approximate
eigenvectors as the new matrix V . In the latter case, the DD-FP scheme can be seen as a domain
decomposition-based Subspace Iteration approach.

If a direct solver is utilized to solve the linear systems with S(ζj), j = 1, . . . , Nc then the DD-FP
scheme is practically a straightforward application of the domain decomposition viewpoint applied
to the computation of an approximation of PV , and is equivalent to the FEAST algorithm tied to
a domain decomposition solver to compute the products (A− ζjI)−1V, j = 1, . . . , Nc. However, a
factorization of S(ζ) is not always feasible (see Section 5). In such scenarios, the DD-FP scheme
can leverage hybrid iterative solvers which might be more practical.

4.2. Partial integration of the matrix resolvent

In this section we describe an alternative scheme, also based on domain decomposition, which
attempts to extract approximate eigenpairs at a lower cost than the DD-FP scheme.

Let the spectral projector P , defined in (11), be expressed in the form P = XXT , X ∈ Rn×r,
where X is written as X = [XT

u , X
T
s ]T with Xu ∈ Rd×r, Xs ∈ Rs×r. Then, P can be also

expressed in a block-partitioned form:

X ≡
(
Xu

Xs

)
, P = XXT → P = [P1,P2] =

(
XuX

T
u XuX

T
s

XsX
T
u XsX

T
s

)
. (17)

Under the mild assumption that r ≤ s, i.e., the number of interface variables s is greater than the
number of eigenvalues r of A located inside [α, β], the range of P can be captured by the range of
P2 = XXT

s = [XT
u , X

T
s ]TXT

s . Equating (17) with (11) shows that XsX
T
s ≡ G and XuX

T
s ≡ −W ,

and thus, in contrast with the DD-FP scheme, we only need to compute the contour integrals −W
and G, and ignore the block H. As discussed in Section 4.3, and confirmed via experiments in
Section 6, avoiding the computation of H can lead to considerable savings in some cases.

Because the above scheme approximates the spectral projector P only partially, we will refer to
it as “Domain Decomposition Partial Projector” (DD-PP).

(2010)
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4.2.1. The DD-PP scheme The range of G and −W can be captured by the range of:

GR =
−1

2iπ

∫

Γ

S(ζ)−1Rdζ, −WR =
1

2iπ

∫

Γ

(B − ζI)−1ES(ζ)−1Rdζ, (18)

for any R ∈ Rs×r̂ such that rank(XT
s R) ≡ rank(Xs).

In practice, (18) will be approximated numerically by a quadrature rule, and thus

GR ≈ G̃R = −
2Nc∑

j=1

ωjS(ζj)
−1R, −WR ≈ −W̃R =

2Nc∑

j=1

ωj(B − ζjI)−1ES(ζj)
−1R. (19)

Combining the contribution of all quadrature nodes together, the final subspace accumulation
proceeds as in Algorithm 4.2, which we abbreviate as DD-PP.

ALGORITHM 4.2
DD-PP

0. Start with a random R ∈ Rs×r̂ and set Z̃ = [Z̃Tu , Z̃
T
s ]T = 0

1. For j = 1, . . . , Nc:
2. Ws := S(ζj)

−1R, Z̃s := Z̃s −<e(ωjWs)

3. Wu := −(B − ζjI)−1EWs, Z̃u := Z̃u −<e(ωjWu)
4. End
5. Rayleigh-Ritz: solve the eigenvalue problem Z̃TAZ̃Q = Z̃T Z̃QΘ

4.2.2. Analysis of the DD-PP scheme The matrix inverse (A− ζI)−1 in (10) can be also written in
terms of the eigenvectors of A as

(A− ζI)−1 =

n∑

i=1

x(i)(x(i))T

λi − ζ
, (20)

where we assume that ζ /∈ Λ(A) with Λ(A) denoting the spectrum of A. If we partition each
eigenvector of A as x(i) = [(u(i))T , (y(i))T ]T , i = 1, . . . , n, and combine (20) with (10) for all
ζ ≡ ζj , j = 1, . . . , 2Nc, we get

2Nc∑

j=1

ωj(A− ζjI)−1 =

n∑

i=1

ρ(λi)

[
u(i)(u(i))T u(i)(y(i))T

y(i)(u(i))T y(i)(y(i))T

]
(21)

where ρ(ζ) is defined in (4). Equating the (1,2) and (2,2) blocks of (10) and (21) we finally get

G̃ = −
2Nc∑

j=1

ωjS(ζj)
−1 = −

n∑

i=1

ρ(λi)y
(i)(y(i))T (22)

− W̃ =

2Nc∑

j=1

ωj(B − ζjI)−1ES(ζj)
−1 = −

n∑

i=1

ρ(λi)u
(i)(y(i))T . (23)

By (22) and (23), we can see that if ρ(λr+1), . . . , ρ(λn) damp sufficiently close to zero, then
range{G̃} ≈ span{y(1), . . . , y(r)}, and range{W̃} ≈ span{u(1), . . . , u(r)}, which are exactly the
subspaces required to retrieve the sought eigenpairs (λ1, x

(1)), . . . , (λr, x
(r)) of matrix A. In the

opposite case, an increase in r̂, the number of columns in matrix R, becomes necessary.
Figure 2 shows the average residual norm of the approximate eigenpairs obtained by the DD-

FP and DD-PP schemes for a small 2D discretized Laplacian of size n = 51× 50 in the interval
[α = 1.6, β = 1.7] (more details on matrices of this form will be given in Section 6.2). In contrast

(2010)
Prepared using nlaauth.cls DOI: 10.1002/nla



8 V. KALANTZIS, J. KESTYN, E. POLIZZI, AND Y. SAAD

1 2 3 4
10

−5

10
−4

10
−3

10
−2

Iterations

A
v
e

ra
g

e
 r

e
la

ti
v
e

 r
e

s
id

u
a

l

2D Laplacian 51 × 50 in [1.6,1.7]

 

 

DD−PP, Nc=4

DD−PP, Nc=8

DD−PP, Nc=12

DD−FP, Nc=4

1 2 3 4
10

−15

10
−10

10
−5

10
0

Iterations

A
v
e

ra
g

e
 r

e
la

ti
v
e

 r
e

s
id

u
a

l

2D Laplacian 51 × 50 in [1.6,1.7]

Figure 2. Average residual norm for a 51× 50 2D Laplacian in the interval [1.6, 1.7]. Left: r̂ = r. Right:
r̂ = 2r. The Gauss-Legendre quadrature rule was used [2].

to DD-PP, DD-FP can use a smaller number of quadrature nodes and correct the approximate
eigenpairs of A by repeating the numerical integration phase using the most recent approximate
eigenvectors as the new set of right-hand sides. Indeed, after four iterations, the DD-FP scheme
with Nc = 4 quadrature nodes achieves an accuracy close to that of the DD-PP scheme utilizing
Nc = 12 quadrature nodes.

We note at this point that the above discussion on the accuracy of DD-PP is independent of the
number of subdomains p.

4.3. Computational comparison of the DD-FP and DD-PP schemes

From a numerical viewpoint, both the DD-PP and DD-FP schemes can perform similarly, but, from
a computational viewpoint, there are some notable differences. DD-PP has a lower computational
complexity per quadrature node than DD-FP, since it avoids performing the first two steps of
the latter. A straightforward calculation reveals that for each quadrature node, the DD-FP scheme
also introduces n× r̂ more floating-point operations (FLOPS) than the DD-PP scheme (the block
matrix subtractions in Steps 3 and 5 in Algorithm 4.1). When accounting for all quadrature
nodes together, the DD-FP scheme introduces Nc × r̂ × [cost solve(B − ζI) + cost MV (E) + n]
additional FLOPS compared to DD-PP. Here, cost solve(B − ζI) and cost MV (E) denote the
costs to multiply (B − ζI)−1 (by solving the linear system) and E/ET by a single vector,
respectively.

Assuming a distributed memory environment, in which each subdomain is assigned to a different
processor group, the additional computational cost introduced by the ith subdomain when using DD-
FP compared to DD-PP, amounts to Nc × r̂ × [cost solve(Bi − ζI) + cost MV (Ei) + di]. Thus,
if di and/or r are large, the dense matrix operations in Steps 3 and 5 of Algorithm 4.1 become
noticeable.

5. SOLVING LINEAR SYSTEMS WITH THE SCHUR COMPLEMENT MATRICES

The major distributed computational procedure in both Algorithm 4.1 and Algorithm 4.2, is the
solution of linear systems with the Schur complement matrices S(ζj), j = 1, . . . , Nc, where each
linear system has r̂ ≥ r right-hand sides.

(2010)
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Assuming that each subdomain is assigned to a different processor, S(ζ) is distributed by rows
among the different processors and has a natural block structure of the form

S(ζ) =




S1(ζ) E12 . . . E1p

E21 S2(ζ) . . . E2p

...
...

. . .
...

Ep1 Ep2 . . . Sp(ζ)


 , (24)

where
Si(ζ) = Ci − ζI − ÊTi (Bi − ζI)−1Êi, i = 1, . . . , p,

is the “local” Schur complement matrix that corresponds to the ith subdomain, and the off-diagonal
blocksEik, i, k = 1, . . . , p, i 6= k, are sparse matrices of size si × sk which account for the coupling
among the different subdomains and are nonzero only if subdomains i and k are adjacent.

The standard approach to solve the distributed linear systems with the Schur complement in (24)
is to explicitly form S(ζ) and compute its LU factorization by a call to a parallel sparse direct
solver, see [4,32]. For problems issued from discretizations of 2D domains, forming and factorizing
S(ζ) explicitly is an attractive option since the size of the Schur complement is small even for a large
number of subdomains. On the other hand, Schur complements that originate from discretizations of
3D computational domains typically require much more memory since in the 3D case the size of the
Schur complement can become exceedingly large [51]. An alternative discussed next is to solve the
linear systems without forming S(ζ),using a preconditioned iterative method (e.g., GMRES [41]).

5.1. Schur complement preconditioners

In this paper we consider sparsified approximations of S(ζ) which are based on sparsity and/or
numerical constraints [13, 21, 39], a procedure summarized in Algorithm 5.1. Other Schur
complement preconditioning approaches can be found in [33, 42, 43].

To form the preconditioner, denoted by SG(ζ), we use two levels of dropping based on numerical
constraints. The first level of dropping concerns the LU factorization of B − ζI which is performed
inexactly, by dropping all entries in the LU factorization whose real or imaginary part is below a
threshold value drop-B. Then, the ith subdomain forms its local Schur complement

Ŝi(ζ) = Ci − ζI − (Û−Ti Êi)
T (L̂−1

i Êi), (25)

while dropping any entry whose real or imaginary part is below a threshold value drop-S. Matrices
L̂i and Ûi denote the LU factors of the incomplete factorization of each Bi − ζI, i = 1, . . . , p.
Overall, the preconditioner takes the form:

SG(ζ) =




Ŝ1(ζ) E12 . . . E1p

E21 Ŝ2(ζ) . . . E2p

...
...

. . .
...

Ep1 Ep2 . . . Ŝp(ζ)


 . (26)

ALGORITHM 5.1
Schur complement preconditioner SG(ζ)

0. Given ζ ∈ C, drop-B, drop-S
1. For i = 1, . . . , p:
2. Obtain a factorization [L̂i, Ûi] = Bi − ζI with drop tolerance drop-B
3. Form Ŝi(ζ) = Ci − ζI − (Û−Ti Êi)

T (L̂−1
i Êi) and

-. drop any entry smaller than drop-S
4. End
5. Factorize SG(ζ) by a sparse direct solver.
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Here are a few details regarding Algorithm 5.1. When forming SG(ζ), we form Ŝi(ζ) a few
columns at a time and immediately sparsify (for each incomplete factorization of Bi − ζI we must
solve a linear system with si sparse right-hand sides). In this paper, by default, we form Ŝi(ζ) two
hundred columns at a time, where all right-hand sides are solved simultaneously using the Pardiso
software package [30, 36]. More details will be given in Section 6.

5.2. Matrix-Vector products with S(ζ)

The Matrix-Vector (MV) product between S(ζ) and a vector v ∈ Cs can be computed as:

S(ζ)v = (C − ζI)v − ET (B − ζI)−1Ev. (27)

Since B and E are block-diagonal and distributed among the set of available processors, no
communication is required when we perform operations with them. On the other hand, performing
operations with C demands communication between processors which handle neighboring
subdomains.

In summary, the computations involved in (27) are:

1. Compute ET (B − ζI)−1Ev (local),

2. Distribute (exchange) the necessary parts of v and perform (C − ζI)v (global),

3. Subtract the vector in 1) from the vector in 2) (local).

Communication in step 2) might overlap with computations in step 1). Using more subdomains
(larger values for p) will reduce the computational cost per processor, but, on the other hand, increase
communication cost.

6. EXPERIMENTS

All numerical schemes were implemented in C/C++ and built on top of the PETSc [7, 18, 19] and
Intel Math Kernel scientific libraries [1]. For PETSc, we used a complex build.§ The source files
were compiled with the Intel MPI compiler mpiicpc, using the -O3 optimization level.

Regarding DD-FP and DD-PP, the computational domain was partitioned in p non-overlapping
subdomains using METIS [26], and each subdomain was then assigned to a distinct processor group.
Communication between different processor groups was achieved by means of the Message Passing
Interface standard (MPI) [48]. Throughout this section, the number of subdomains pwill also denote
the number of MPI processes. The LU factorizations and linear system solutions associated with the
block-diagonal matrices B − ζjI, j = 1, . . . , Nc, were performed by the shared-memory, multi-
threaded version of the Pardiso library (version 5.0.0) [30, 36]. Unless stated otherwise, the default
number of threads per MPI process, as denoted by variable τ , will be equal to one.

The quadrature nodes and weights ζj , ωj , j = 1, . . . , Nc were computed by the Gauss-Legendre
quadrature rule of order 2Nc [2], retaining only the Nc quadrature nodes (and associated weights)
with positive imaginary part. While it is possible to utilize block Krylov subspace solvers [23],
e.g., block GMRES [46], throughout the rest of this section, the multiple right-hand sides will be
solved one after the other. Whenever we computed an incomplete factorization of the block-diagonal
matricesB − ζjI, j = 1, . . . , Nc, that was obtained by the UMFPACK [14] library, and the resulting
triangular factors were then passed to Pardiso.

Finally, all distributed memory matrix factorizations and triangular substitutions associated with
the distributed matrices A− ζjI and S(ζj), j = 1, . . . , Nc, were performed by MUMPS [4].

§The complex version of PETSc was built using the option --with-fortran-kernels=generic
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Table I. Average amount of time spent on a single quadrature node in DD-PP and DD-FP to approximate the
eigenvalues λ1001, . . . , λ1200 and associated eigenvectors for three discretized 2D Laplacians.

p = 8 p = 16 p = 32 p = 64

DD-PP DD-FP DD-PP DD-FP DD-PP DD-FP DD-PP DD-FP
n = 5002

r̂ = r + 10 9.45 13.7 6.77 8.91 5.25 6.34 4.65 5.30
r̂ = 3r/2 + 10 13.5 19.5 9.65 12.7 7.59 9.01 6.64 7.54
r̂ = 2r + 10 18.1 26.0 12.9 16.8 10.0 12.1 8.83 10.1
n = 10002

r̂ = r + 10 41.8 62.7 25.3 35.8 17.9 23.1 14.8 19.0
r̂ = 3r/2 + 10 59.7 89.5 36.0 49.9 25.5 33.1 21.1 26.9
r̂ = 2r + 10 79.1 119.3 68.1 68.1 34.1 44.2 28.4 36.3
n = 15002

r̂ = r + 10 100.8 140.7 65.2 88.8 39.9 44.2 29.5 37.8
r̂ = 3r/2 + 10 144.2 201.3 93.1 126.4 57.6 63.9 42.6 54.9
r̂ = 2r + 10 192.7 268.6 124.5 168.9 76.0 84.3 56.7 72.7

6.1. Computational system

The experiments were performed on the Mesabi Linux cluster at Minnesota Supercomputing
Institute. Mesabi consists of 741 nodes of various configurations with a total of 17,784 compute
cores provided by Intel Haswell E5-2680v3 processors. Each node features two sockets, each socket
with twelve physical cores at 2.5 GHz. Each node is also equipped with 64 GB of system memory.
Each MPI process will be paired with a single socket of each Mesabi node.

6.2. The model problem

The model problem test matrices originate from discretizations of elliptic PDEs on 2D and 3D
computational domains. More specifically, we are interested in solving the following eigenvalue
problem,

−∆u = λu, (28)

on a rectangular domain, with Dirichlet boundary conditions (∆ denotes the Laplacian differential
operator). Using second order centered finite differences with nx, ny and nz discretization points
along each corresponding dimension, we obtain matrix A, the discretized version of ∆, of size
n = nxnynz .

6.3. A comparison of the DD-FP and DD-PP schemes for 2D domains

We start by comparing the DD-FP and DD-PP schemes on a set of discretized 2D Laplacian matrices
(nz = 1), where the Schur complement matrices S(ζj), j = 1, . . . , Nc, were formed and factorized
explicitly (drop-B=drop-S=1e-16). In order to perform a fair comparison between these two
schemes, only one outer iteration in DD-FP was allowed.

The interval of interest was arbitrarily set to [α, β] = [(λ1000 + λ1001)/2, (λ1200 + λ1201)/2] (and
thus r = 200). We used Nc = 4, Nc = 8 and Nc = 12 quadrature nodes, while we also varied the
number of right-hand sides, r̂. Table I reports the average time spent on a single quadrature node
for the case Nc = 8. Per quadrature node timings for the rest of the values of Nc were basically
identical. DD-PP was always faster than DD-FP, especially as p obtained smaller values, and n and
r̂ larger values, respectively. The latter results lie in agreement with the discussion in Section 4.3.

Figure 3 plots the maximum residual norm of the approximate eigenpairs of the 2D Laplacian of
size n = 10002 for all different combinations of Nc and r̂ reported in Table I. The residual norms of
the DD-FP and DD-PP schemes were of the same order of magnitude, therefore we report results
only for the DD-PP scheme.

The last experiment of this section focuses on a comparison between DD-FP and a PETSc-
based implementation of the FEAST algorithm that utilizes MUMPS to factorize and solve the
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Figure 3. Maximum residual norm of the approximation of the eigenpairs inside the interval [α, β] =

[(λ1000 + λ1001)/2, (λ1200 + λ1201)/2], when DD-PP is applied to the n = 10002 Laplacian.

Table II. Wall-clock time to compute eigenvalues λ1001, . . . , λ1200 and corresponding eigenvectors of the
n = 15002 Laplacian by the CI-M and DD-FP schemes, as the values of Nc and r̂ vary. “Its” denotes the

number of outer iterations required by Subspace Iteration.

Its p = 64 p = 128 p = 256

CI-M DD-FP CI-M DD-FP CI-M DD-FP
Nc = 2

r̂ = 3r/2 + 10 9 3,922.7 2,280.6 2,624.3 1,242.4 1,911.2 859.5
r̂ = 2r + 10 5 2,863.2 1,764.5 1,877.7 998.5 1,255.5 615.3
Nc = 4

r̂ = 3r/2 + 10 5 4,181.5 2,357.0 2,815.7 1,280.2 1,874.1 877.5
r̂ = 2r + 10 4 4,330.3 2,571.4 2,869.5 1,462.9 2,023.2 1,036.2
Nc = 6

r̂ = 3r/2 + 10 3 3,710.3 2,068.2 2,504.1 1,122.1 1,790.8 766.5
r̂ = 2r + 10 3 4,774.8 2,798.5 3,177.7 1,595.2 2,743.6 1,125.1
Nc = 8

r̂ = 3r/2 + 10 3 4,911.6 2,722.2 3,318.7 1,476.1 2,367.7 1,006.5
r̂ = 2r + 10 2 4,204.7 2,445.2 2,802.1 1,395.4 1,806,6 982.1

linear systems with matrices A− ζjI, j = 1, . . . , Nc. The latter will be referred to as Contour
Integration-MUMPS (CI-M). Table II lists the wall-clock times of DD-FP and CI-M to compute
all eigenpairs located inside the interval [α, β] = [(λ1000 + λ1001)/2, (λ1200 + λ1201)/2] for the
n = 15002 Laplacian. Each eigenpair was sought to at least eight digits of accuracy, while “Its”
denotes the number of outer iterations (same in both schemes). For CI-M, p denotes the number
of MPI processes set in MUMPS. Increasing Nc leads to fewer outer iterations, although this does
not necessarily imply lower wall-clock times. The performance gap between the DD-FP and CI-M
schemes follows a slightly increasing trend as larger values of p are used, mainly because the linear
system solution phase scales better in DD-FP than what in CI-M.

6.4. A 3D model problem

In this section we consider the solution of an eigenvalue problem where A originates from
a discretization of the Laplacian operator on the unit cube, with nx = ny = nz = 150 (n =
3, 375, 000). For 3D problems of this size, a direct formation and factorization of the Schur
complement matrices can be rather expensive, and, depending on the number of eigenvalues sought,
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Figure 4. Total number of preconditioned GMRES iterations in order to solve a linear system with a single
right-hand side for various values of Nc and p.

as well as their location in the spectrum, preconditioned iterative solvers might form a better
alternative.

In contrast with Section 6.3, the solution of linear systems with the Schur complement matrices
far dominates the overall computational time, and thus the DD-FP and DD-PP schemes are almost
identical when it comes to wall-clock times. Thus, we only compare the DD-FP and CI-M schemes,
and consider the problem of computing the smallest r=20 and all r=100 eigenvalues (and associated
eigenvectors) located inside the intervals: [α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2], and [α, β] =
[(λ500 + λ501)/2, (λ600 + λ601)/2].

6.4.1. DD-FP with preconditioned iterative linear system solvers Figure 4 lists the total number
of preconditioned GMRES iterations to compute

∑Nc

j=1 S(ζj)
−1v for a random v ∈ Cs. Details

on the preconditioner used will be given later in this section. The interval of interest was set to
[α, β] = [(λ100 + λ101)/2, (λ120 + λ121)/2]. We can observe that as Nc increases, the number of
preconditioned GMRES iterations also increases. Indeed, iterative solvers are greatly affected by the
location of the quadrature nodes ζj , j = 1, . . . , Nc, with ζj’s which lie closer to the real axis leading
to slower convergence [20]. By construction, higher values ofNc will lead to some quadrature nodes
being closer to the real axis. Thus, when iterative solvers are exploited, setting Nc to a low value,
e.g. Nc = 1 or Nc = 2, might in practice be a good choice.

Throughout this section, the iterative linear system solver used by DD-FP will be the right
preconditioned GMRES, allowing up to 250 iterations per restart. The linear system solution process
will terminate as soon as the norm of the residual of the corresponding approximate solution is ten
orders of magnitude smaller compared to the initial residual norm.

6.4.2. Combining the distributed and shared memory paradigms When each subdomain is handled
by a distinct MPI process, increasing the amount of parallelism in DD-FP leads to an increase in
the size of the Schur complement matrices.¶ Instead, we can use lower values for p and increase the
number of available compute threads, τ , in Pardiso to solve the linear system solutions with matrices
B − ζjI, j = 1, . . . , Nc.

Table III shows a comparison between a) flat MPI, and b) a hybrid (MPI+Threads)
implementation using one thread per compute core, to compute

∑Nc

j=1 S(ζj)
−1v, Nc = 1, where

v ∈ Cs is a random vector and [α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2]. To construct the
preconditioner SG(ζj) we set drop-B=1e-4, and drop-S=1e-2. Although the flat MPI

¶An alternative to increase the amount of parallelism without increasing the size of the Schur complement matrices is to
assign different quadrature nodes to different groups of processors by exploiting additional levels of MPI parallelism
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Table III. Breakdown of the total time required to compute
∑Nc

j=1 S(ζj)
−1v for a random v ∈ Cs, where

Nc = 1 and [α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2]. τ : number of threads per MPI process.

p× τ = 32 p× τ = 64 p× τ = 128 p× τ = 256

τ = 1 τ = 1 τ = 2 τ = 1 τ = 4 τ = 1 τ = 8

MV with S(ζ1) 1.03 0.38 0.45 0.12 0.27 0.04 0.23
Factorization of SG(ζ1) 3.20 5.01 3.20 7.23 3.20 9.06 3.20
Application of SG(ζ1)−1 0.28 0.47 0.28 0.58 0.28 0.89 0.28
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Figure 5. Time breakdown of the CI-M scheme (time spent on factorizations and triangular substitutions)
for Nc = 1, Nc = 2 and Nc = 3 quadrature nodes, using the optimal choice of r̂ for each different
value of Nc, and p = 128 MPI processes. For each choice of Nc, we show the breakdown
for intervals i1 := [(λ100 + λ101)/2, (λ120 + λ121)/2], i2 := [(λ100 + λ101)/2, (λ200 + λ201)/2], i3 :=

[(λ500 + λ501)/2, (λ520 + λ521)/2], and i4 := [(λ500 + λ501)/2, (λ600 + λ601)/2].

implementation requires less time to compute the MV product with S(ζ1), the main advantage
of the hybrid implementation is that the cost to apply the preconditioner does not increase as we
increase the number of compute cores. When 256 compute cores are available, exploiting 32 MPI
processes, each with eight threads, is about three times faster than exploiting 256 MPI processes,
each with one thread.

6.4.3. A comparison of the CI-M and DD-FP schemes We now compare the wall-clock times of CI-
M and DD-FP to compute the smallest r = 20 and all r = 100 eigenpairs located inside the intervals
[α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2], and [α, β] = [(λ500 + λ501)/2, (λ600 + λ601)/2]. For
DD-FP, we kept p = 32 fixed, allowing each MPI process to utilize exactly p/32 threads.

Table IV lists the best (lowest) wall-clock times achieved by executing CI-M and DD-FP for two
different values of Nc, Nc = 1 and Nc = 2 (setting Nc > 2 always led to longer times), and three
different values of r̂. DD-FP was considerably faster than CI-M in all cases where r = 20. When
r = 100, DD-FP was faster than CI-M for the interval [α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2],
but considerably slower than CI-M for the interval [α, β] = [(λ500 + λ501)/2, (λ600 + λ601)/2]. In
the latter case, the average time required to solve for a right-hand side by MUMPS was much lower
than the amount of time required by preconditioned GMRES in DD-FP.

Note that the wall-clock times of DD-FP (especially its scalability) can generally improve, since,
for reasons of fair comparison against CI-M, for MUMPS we used only MPI parallelism, and
thus only a fraction of the available compute cores were active in DD-FP when we applied the
preconditioner SG(ζj).

Figure 5 plots the time breakdown of CI-M if we focus on its two main computational procedures,
i.e., the amount of time spent on factorizations and triangular substitutions. Results shown are for
the optimal choice r̂ for each different value of Nc shown, and for p = 128 MPI processes. The
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Table IV. Best (lowest) wall-clock times achieved by executing CI-M and DD-FP for Nc = 1 and Nc = 2.
For CI-M we kept τ = 1 fixed, while for DD-FP we kept p = 32 fixed. Variable “Its” denotes the total

number of outer iterations performed by CI-M and DD-FP.

Its p× τ = 64 p× τ = 128 p× τ = 256

Nc = 1 Nc = 2 CI-M DD-FP CI-M DD-FP CI-M DD-FP
[α, β] ≡ [λ101, λ120]

r̂ = 50 8 5 1,607.2 324.8 841.4 240.0 685.0 217.9
r̂ = 100 6 4 2,073.9 473.1 1,092.1 353.2 875.2 313.8
r̂ = 39 8 5 1,420.6 265.5 741.6 194.8 609.1 166.8

[α, β] ≡ [λ501, λ520]

r̂ = 50 9 5 1,723.9 1,029.1 904.3 777.4 732.5 685.9
r̂ = 100 5 4 1,840.5 1,140.3 966.9 862.3 780.0 781.2
r̂ = 39 9 5 1,492.9 808.9 780.4 609.5 638.5 541.6

[α, β] ≡ [λ101, λ200]

r̂ = 200 14 5 6,013.9 3,141.9 3,185.4 2,389.6 2,510.1 2,105.4
r̂ = 300 9 4 6,942.3 3,030.7 3,662.1 2,304.9 2,814.3 2,072.7
r̂ = 236 10 5 6,179.6 2,652.6 3,294.9 1,989.3 2,547.1 1,766.4

[α, β] ≡ [λ501, λ600]

r̂ = 200 12 5 6,013.9 13,373.4 3,185.8 10,195.8 2,510.2 9,447.2
r̂ = 400 7 3 6,950.2 15,596.3 3,664.1 11,892.2 2,876.2 10,564.3
r̂ = 166 13 5 5,220.4 11,954.5 2,759.9 9,114.0 2,178.1 8,444.6

average (per quadrature node) factorization time required by MUMPS was 679.02, 332.11, and
298.43 seconds, for 64, 128, and 256 MPI processes, respectively. Combining the latter with the
results in Table IV, we observe that for the values of Nc reported in this section, the amount of time
spent on linear system solutions generally dominates the wall-clock times. Similar observations also
hold for DD-FP.

6.4.4. Exploiting additional levels of MPI parallelism One of the main advantages of contour
integration eigensolvers is their ability to take advantage of additional levels of MPI parallelism,
e.g. by distributing different quadrature nodes and/or right-hand sides to different groups of MPI
processes. The latter can be achieved by organizing the set of available MPI processes in a 2D
formation, and restricting MPI processes within the same column subgrid to perform computations
related to either a fraction of the Nc quadrature nodes, or a fraction of the r̂ right-hand sides.

We repeated the experiments in Section 6.4.3, this time organizing the MPI processes in various
2D grid formations. As before, the maximum number of MPI processes was set to 256. For CI-
M we tried four different 2D formations; 64×1, 64×2, 64×3, and 64×4. Similarly, for DD-FP,
we considered the 2D formations 32×1, 32×2, 32×3, and 32×4, allowing each MPI process to
utilize τ = 2 computational threads. For DD-FP, we considered a single quadrature node (Nc = 1)
and assigned different right-hand sides to different column subgrids of MPI processes (thus each
column subgrid of MPI processes was responsible for only a fraction of the r̂ right-hand sides
in each iteration in DD-FP). For CI-M, we tested two options. First, we considered CI-M with
Nc = 1 and Nc = 2, and assigned different right-hand sides to different column subgrids of MPI
processes (thus, similarly to DD-FP, each column subgrid of MPI processes was responsible for
all Nc quadrature nodes but only a fraction of the r̂ right-hand sides in each iteration in CI-M).
We denote this option by CI-M1. Note that CI-M1 is limited only to scenarios where each column
subgrid of MPI processes has enough memory to store all Nc matrix factorizations. Second, we
considered CI-M with Nc = 4 quadrature nodes and assigned the different quadrature nodes to
different column subgrids of MPI processes (thus each separate column subgrid of MPI processes
was responsible for all r̂ right-hand sides, but for one/a few of the Nc quadrature node(s) only). We
denote this option by CI-M2.
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Figure 6. Wall-clock times of CI-M and DD-FP to compute all r = 100 eigenpairs inside the intervals
[α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2] and [α, β] = [(λ500 + λ501)/2, (λ600 + λ601)/2] when a 2D

grid of MPI processesis exploited. The number of right-hand sides was set to r̂ = 200.

Table V. Test matrices obtained by the PARSEC collection. We list the matrix size n, the total number of
non-zero entries nnz, the interval of interest [α, β], and the number of eigenvalues r located inside [α, β].

Matrix n nnz [α, β] r
Ge99H100 112,985 8,451,295 [−0.65,−0.0096] 250
Si41Ge41H72 185,639 15,011,265 [−0.64,−0.0028] 218
Si87H76 240,369 10,661,631 [−0.66,−0.0300] 213

Figure 6 plots the wall-clock times of CI-M and DD-FP when two levels of MPI parallelism are
considered. For simplicity, we considered only the case r̂ = 200. Exploiting a 32× 4 2D grid, DD-
FP computed all r = 100 eigenpairs inside the intervals [α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2]
and [α, β] = [(λ500 + λ501)/2, (λ600 + λ601)/2], in less than 900 and 3,500 seconds, respectively.
The latter wall-clock times constitute a considerable improvement over those obtained by the 1D
grid of MPI processes reported in Table IV. For CI-M1, the wall-clock time improvement over the
1D grid of MPI processes was not as pronounced as in DD-FP due to the overhead introduced by the
factorizations of matricesA− ζjI, j = 1, . . . , Nc. On the other hand, increasingNc and distributing
the quadrature nodes, as in CI-M2, seems to be a more efficient choice when a larger number of
computational resources becomes available. Additional details on the performance of FEAST and
related approaches when multiple levels of MPI parallelism are considered can be found in [3, 27].

6.5. The PARSEC matrix collection

Our third set of experiments consists of a few matrices originating from applications in Electronic
Structure Calculations. The matrices of interest (Hamiltonians) were generated using the PARSEC
software package [17], and can be found in the University of Florida Sparse Matrix Collection [15].||

Details on the size of the matrices, as well as the interval of interest determined by the Density
Functional Theory application, are listed in Table V.

The number of nonzero entries of each Hamiltonian is quite large, a consequence of the high-
order discretization used, as well as the addition of a (dense) ‘non-local’ term. Together with the 3D
nature of the problem, this leads to a large number of interface variables, challenging the practicality
of direct linear system solvers. In order to increase the efficiency of contour integration eigensolvers
for such problems, we consider the replacement of direct solvers by preconditioned iterative solvers.
Throughout this section we will only consider block-Jacobi preconditioners

SBJ(ζj) = bdiag(S1(ζj), . . . , Sp(ζj)), j = 1, . . . , Nc. (29)

‖https://www.cise.ufl.edu/research/sparse/matrices/
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Table VI. Time elapsed to perform the Nc LU matrix factorizations A− ζjI, j = 1, . . . , Nc in CI-M versus
time elapsed to form and factorize the block-Jacobi preconditioner in DD-FP.

p = 4 p = 8 p = 16 p = 32

CI-M DD-FP CI-M DD-FP CI-M DD-FP CI-M DD-FP
Ge99H100

Nc = 1 424.1 27.9 362.8 5.1 155.9 1.36 80.2 0.51
Nc = 2 860.9 56.4 714.2 10.7 308.7 2.57 162.3 0.92
Nc = 3 1,265.9 86.3 1,089.4 15.5 461.1 4.26 239.5 1.47
Si41Ge41H72

Nc = 1 1276.1 38.8 942.6 10.1 486.1 3.31 230.2 1.52
Nc = 2 X 74.5 1888.1 19.8 969.3 6.46 452.7 2.81
Nc = 3 X 117.4 X 28.8 1,442.5 10.0 691.3 4.40
Si87H76

Nc = 1 X 119.8 1726.2 14.5 942.4 1.23 382.1 0.51
Nc = 2 X 247.4 X 29.7 1872.8 2.53 758.0 0.94
Nc = 3 X 355.1 X 44.6 2,853.9 3.82 1,127.4 1.61

Table VII. Time elapsed to perform the computation
∑Nc

j=1(A− ζjI)−1v with (DD-FP) and without (CI-M)
using the domain decomposition framework. Vector v ∈ Cn denotes a random complex vector.

p = 4 p = 8 p = 16 p = 32

CI-M DD-FP CI-M DD-FP CI-M DD-FP CI-M DD-FP
Ge99H100

Nc = 1 0.7 5.1 0.7 1.7 0.4 0.6 0.3 0.3
Nc = 2 1.5 13.1 1.4 3.2 0.8 1.7 0.7 0.5
Nc = 3 2.3 33.3 1.9 11.8 1.1 4.1 1.0 1.2
Si41Ge41H72

Nc = 1 1.8 7.5 1.2 3.7 0.7 1.0 0.7 0.5
Nc = 2 X 32.8 2.5 12.1 1.4 3.5 1.4 0.8
Nc = 3 X 61.3 X 31.2 2.1 8.6 2.1 2.1
Si87H76

Nc = 1 X 15.0 1.6 4.3 1.3 0.9 0.9 0.4
Nc = 2 X 50.2 X 14.0 2.8 3.3 1.9 0.8
Nc = 3 X 120.5 X 34.8 4.0 7.5 2.7 2.0

Table VI lists the time elapsed to perform allNc factorizations of the formA− ζjI, j = 1, . . . , Nc
(CI-M) versus the elapsed time to form and factorize the block-Jacobi preconditioner for all
i = 1, . . . , p, and j = 1, . . . , Nc (DD-FP). We report times obtained for a varying number of
MPI processes (subdomains). A “X” flag under the CI-M scheme implies that not all Nc matrix
factorizations could fit in the memory allocated by each MPI process.

Table VII lists the time elapsed to solve all Nc linear systems by the CI-M and DD-FP schemes
for a random right-hand side v ∈ Cn, i.e,

∑Nc

j=1(A− ζjI)−1v. For lower values of p, the DD-FP
scheme is not competitive, since the cost to apply the block-Jacobi preconditioner is quite high in
this case. However, as p increases, the time to solve a linear system by a preconditioned iterative
method drops dramatically (we note that the number of iterations is only slightly increased as p
increases). Moreover, increasing the value of Nc results in a proportional increase in computational
time for the direct solver but to a much more pronounced increase for the case of preconditioned
iterative solvers, owed to the fact that iterative solvers are sensitive to the magnitude of the complex
part of each quadrature node (see also the discussion in Section 6.4.1).

Figure 7 plots the maximum residual norm of the approximation of the eigenpairs located inside
the interval [α, β] as a function of the number of outer iterations performed by DD-FP.
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Figure 7. Maximum residual norm of the approximation of the eigenpairs inside the interval [α, β], as a
function of the number of outer iterations performed by DD-FP. Results are shown for Nc = 2, Nc = 3,
and r̂ = 400, r̂ = 500. Solid lines correspond to r̂ = 400, while dashed lines correspond to r̂ = 500. Left:

Ge99H100. Right:Si41Ge41H72.

Table VIII. Wall-clock times of CI-M and DD-FP to compute all eigenpairs located inside the intervals [α, β]
reported in Table V (we set p = 32). “Its” denotes the total number of outer iterations performed by DD-FP

and CI-M.

r̂ = 400 r̂ = 500
Its CI-M DD-FP Its CI-M DD-FP

Ge99H100

Nc = 2 22 5,990 4,675 9 4,164 3,198
Nc = 3 12 3,787 4,438 5 2,750 3,091
Si41Ge41H72

Nc = 2 13 7,651 4,392 8 5,996 3,410
Nc = 3 5 4,806 4,287 6 6,865 6,360
Si87H76

Nc = 2 15 12,059 4,593 10 10,172 3,852
Nc = 3 5 6,467 3,960 6 9,114 5,915

Finally, Table VIII reports the total wall-clock time required by CI-M and DD-FP to compute
all sought eigenpairs for the case p = 32. DD-FP was faster** than CI-M for almost all different
combinations of Nc and r̂ tested, due to the avoidance of the costly matrix factorizations in CI-M
and its lower timings to perform the required linear system solutions.

7. CONCLUSION

In this paper we studied contour integration methods for computing eigenvalues and eigenvectors of
sparse matrices using a domain decomposition viewpoint. We discussed two different numerical
schemes. The first scheme, abbreviated as DD-FP, is a flexible implementation of the domain
decomposition framework in the context of contour integral-based methods. When a direct solver is
used for the Schur complement linear systems, DD-FP is equivalent to a FEAST approach in which
domain decomposition-based direct solvers are employed for the solution of the complex linear
systems arising from the numerical integration. The second scheme, abbreviated as DD-PP, focuses
on approximating the contour integrals only partially by integrating the Schur complement operator
along the complex contour. Moreover, we considered the use of domain decomposition in the context
of preconditioned iterative solvers as a replacement of the direct solvers. Experiments indicate that
this approach can potentially be faster, but that its ultimate effectiveness will be dictated by the

∗∗DD-FP also required far less memory than CI-M.
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performance of the iterative scheme used for solving the linear systems. In particular, the method
can be vastly superior than FEAST with a direct solver when computing eigenvalues on both ends
of the spectrum but it may encounter difficulties when the eigenvalues to be computed are located
deep inside the spectrum.

Future work includes the incorporation of a distributed block GMRES linear system solver to
solve the complex linear systems with the Schur complement matrices in DD-FP and DD-PP.
Another interesting path would be to further study the performance of DD-FP and DD-PP when
additional levels of distributed and shared memory parallelism are exploited.
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