Cucheb: A GPU implementation of the filtered Lanczos procedure

Jared L. Aurentz, Vassilis Kalantzis, and Yousef Saad

May 2017

EPrint ID: 2017.1

Department of Computer Science and Engineering University of Minnesota, Twin Cities

Preprints available from: http://www-users.cs.umn.edu/kalantzi

Supercomputing Institute

Cucheb: a GPU implementation of the filtered Lanczos procedure †

Jared L. Aurentz^a, Vassilis Kalantzis^{b,*}, Yousef Saad^b

 ^a Instituto de Ciencias Matemáticas, Nicolás Cabrera 1315, Campus de Cantoblanco, UAM, 28049 Madrid, Spain.
 ^bDepartment of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

Abstract

This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10.

Keywords: GPU, eigenvalues, eigenvectors, quantum mechanics, electronic structure calculations, density functional theory

[†]This work was partially supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/20072013)/ERC grant agreement no. 291068. The views expressed in this article are not those of the ERC or the European Commission, and the European Union is not liable for any use that may be made of the information contained here; and by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences DE-SC0008877.

^{*}Corresponding author.

E-mail address: kalan019@umn.edu

Program title: Cucheb

Licensing provisions: MIT

Programming language: CUDA C/C++

Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval.

Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU).

Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix.

1. Introduction

This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure [1]. The filtered Lanczos procedure (FLP) uses carefully chosen polynomial spectral transformations to accelerate the computation of all the eigenvalues and corresponding eigenvectors of a real symmetric matrix A inside a given interval. The chosen polynomial maps the eigenvalues of interest to the extreme part of the spectrum of the transformed matrix. The Lanczos method [2] is then applied to the transformed matrix which typically converges quickly to the invariant subspace corresponding to the extreme part of the spectrum. This technique has been particularly effective for large sparse eigenvalue problems arising in electronic structure calculations [3, 4, 5, 6, 7].

In the density functional theory framework (DFT) the solution of the all-electron Schrödinger equation is replaced by a one-electron Schrödinger equation with an effective potential which leads to a nonlinear eigenvalue problem known as the Kohn-Sham equation [8, 9]:

$$\left[-\frac{\nabla^2}{2} + V_{ion}(r) + V_H(\rho(r), r) + V_{XC}(\rho(r), r)\right]\Psi_i(r) = E_i\Psi_i(r), \quad (1)$$

where $\Psi_i(r)$ is a wave function and E_i is a Kohn-Sham eigenvalue. The ionic potential V_{ion} reflects contributions from the core and depends on the

position r only. Both the Hartree and the exchange-correlation potentials depend on the charge density:

$$\rho(r) = 2 \sum_{i=1}^{n_{occ}} |\Psi_i(r)|^2, \qquad (2)$$

where n_{occ} is the number of occupied states (for most systems of interest this is half the number of valence electrons). Since the total potential $V_{total} = V_{ion} + V_H + V_{XC}$ depends on $\rho(r)$ which itself depends on eigenfunctions of the Hamiltonian, Equation (1) can be viewed as a nonlinear eigenvalue problem or a nonlinear eigenvector problem. The Hartree potential V_H is obtained from ρ by solving the Poisson equation $\nabla^2 V_H(r) = -4\pi\rho(r)$ with appropriate boundary conditions. The exchange-correlation term V_{XC} is the key to the DFT approach and it captures the effects of reducing the problem from many particles to a one-electron problem, i.e., from replacing wavefunctions with many coordinates into ones that depend solely on space location r.

Self-consistent iterations for solving the Kohn-Sham equation start with an initial guess of the charge density $\rho(r)$, from which a guess for V_{total} is computed. Then (1) is solved for $\Psi_i(r)$'s and a new $\rho(r)$ is obtained from (2) and the potentials are updated. Then (1) is solved again for a new ρ obtained from the new $\Psi_i(r)$'s, and the process is repeated until the total potential has converged.

A typical electronic structure calculation with many atoms requires the calculation of a large number of eigenvalues, specifically the n_{occ} leftmost ones. In addition, calculations based on time-dependent density functional theory [10, 11], require a substantial number of unoccupied states, states beyond the Fermi level, in addition to the occupied ones. Thus, it is not uncommon to see eigenvalue problems in the size of millions where tens of thousands of eigenvalues may be needed.

Efficient numerical methods that can be easily parallelized in current high-performance computing environments are therefore essential in electronic structure calculations. The high computational power offered by GPUs has increased their presence in the numerical linear algebra community and they are gradually becoming an important tool of scientific codes for solving large-scale, computationally intensive eigenvalue problems. While GPUs are mostly known for their high speedups relative to CPU-bound operations¹,

¹See also the MAGMA project at http://icl.cs.utk.edu/magma/index.html

sparse eigenvalue computations can also benefit from hybrid CPU-GPU architectures. Although published literature and scientific codes for the solution of sparse eigenvalue problems on a GPU have not been as common as those that exist for multi-CPU environments, recent studies conducted independently by some of the authors of this paper demonstrated that the combination of polynomial filtering eigenvalue solvers with GPUs can be beneficial [12, 13].

The goal of this paper is twofold. First we describe our open source software package Cucheb² that uses the filtered Lanczos procedure to accelerate large sparse eigenvalue computations using Nvidia brand GPUs. Then we demonstrate the effectiveness of using GPUs to accelerate the filtered Lanczos procedure by solving a set of eigenvalue problems originating from electronic stucture calculations with Cucheb and comparing it with a similar CPU implementation.

The paper is organized as follows. Section 2 introduces the concept of polynomial filtering for symmetric eigenvalue problems and provides the basic formulation of the filters used. Section 3 discusses the proposed GPU implementation of the filtered Lanczos procedure. Section 4 presents computational results with the proposed GPU implementations. Finally, concluding remarks are presented in Section 5.

2. The filtered Lanczos procedure

The Lanczos algorithm and its variants [2, 14, 15, 16, 17, 18, 19] are well-established methods for computing a subset of the spectrum of a real symmetric matrix. These methods are especially adept at approximating eigenvalues lying at the extreme part of the spectrum [20, 21, 22, 23]. When the desired eigenvalues are well inside the spectral interval these techniques can become ineffective and lead to large computational and memory costs. Traditionally, this is overcome by mapping interior eigenvalues to the exterior part using a shift-and-invert spectral transformation (see for example [24] or [25]). While shift-and-invert techniques typically work very well, they require solving linear systems involving large sparse matrices which can be difficult or even infeasible for certain classes of matrices.

The filtered Lanczos procedure (FLP) offers an appealing alternative for such cases. In this approach interior eigenvalues are mapped to the exterior of

²https://github.com/jaurentz/cucheb

the spectrum using a polynomial spectral transformation. Just as with shiftand-invert, the Lanczos method is then applied to the transformed matrix [1]. The key difference is that polynomial spectral transformations only require matrix-vector multiplication, a task that is often easy to parallelize for sparse matrices. For FLP constructing a good polynomial spectral transformation is the most important prepocessing step.

2.1. Polynomial spectral transformations

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and let

$$A = V\Lambda V^T \tag{3}$$

be its spectral decomposition, where $V \in \mathbb{R}^{n \times n}$ is an orthogonal matrix and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ is real and diagonal. A spectral transformation of A is a mapping of the form

$$f(A) = V f(\Lambda) V^T, \tag{4}$$

where $f(\Lambda) = \text{diag}(f(\lambda_1), \ldots, f(\lambda_n))$ and f is any (real or complex) function f defined on the spectrum of A. Standard examples in eigenvalue computations include the shift-and-invert transformation $f(z) = (z - \rho)^{-1}$ and $f(z) = z^k$ for subspace iteration.

A polynomial spectral transformation or filter polynomial is any spectral transformation that is also a polynomial. For the filtered Lanczos procedure a well constructed filter polynomial means rapid convergence and a good filter polynomial p should satisfy the following requirements: a) the desired eigenvalues of A are the largest in magnitude eigenvalues of p(A), b) the construction of p requires minimal knowledge of the spectrum of A, and c) multiplying a vector by p(A) is relatively inexpensive and easy to parallelize.

Our implementation of the FLP constructs polynomials that satisfy the above requirements using techniques from digital filter design. The basic idea is to construct a polynomial filter by approximating an "ideal" filter which maps the desired eigenvalues of A to eigenvalues of largest magnitude in p(A).

2.2. Constructing polynomial transformations

Throughout this section it is assumed that the spectrum of A is contained entirely in the interval [-1, 1]. In practice, this assumption poses no restrictions since the eigenvalues of A located inside the interval $[\lambda_{\min}, \lambda_{\max}]$, where λ_{\min} , λ_{\max} denote the algebraically smallest and largest eigenvalues of A respectively, can be mapped to the interval [-1, 1] by the following linear transformation:

$$A := (A - cI)/e, \quad c = \frac{\lambda_{\min} + \lambda_{\max}}{2}, \quad e = \frac{\lambda_{\max} - \lambda_{\min}}{2}.$$
 (5)

Since λ_{\min} and λ_{\max} are exterior eigenvalues of A, one can obtain very good estimates by performing a few Lanczos steps. We will see in Section 4 that computing such estimates constitutes only a modest fraction of the total compute time.

Given a subinterval $[\alpha, \beta] \subset [-1, 1]$ we wish to compute all eigenvalues of A in $[\alpha, \beta]$ along with their corresponding eigenvectors. Consider first the following spectral transformation:

$$\phi(z) = \begin{cases} 1, & z \in [\alpha, \beta], \\ 0, & \text{otherwise.} \end{cases}$$
(6)

The function ϕ is just an indicator function, taking the value 1 inside the interval $[\alpha, \beta]$ and zero outside. When acting on A, ϕ maps the desired eigenvalues of A to the repeated eigenvalue 1 for $\phi(A)$ and all the unwanted eigenvalues to 0. Moreover, the invariant subspace which corresponds to eigenvalues of A within the interval $[\alpha, \beta]$ is identical to the invariant subspace of $\phi(A)$ which corresponds to the multiple eigenvalue 1. Thus, applying Lanczos on $\phi(A)$ computes the same invariant subspace, with the key difference being that the eigenvalues of interest (mapped to one) are well-separated from the unwanted ones (mapped to zero), and rapid convergence can be established. Unfortunately, such a transformation is not practically significant as there is no cost-effective way to multiply a vector by $\phi(A)$.

A practical alternative is to replace ϕ with a polynomial p such that $p(z) \approx \phi(z)$ for all $z \in [-1, 1]$. Such a p will then map the desired eigenvalues of A to a neighborhood of 1 for p(A). Moreover, since p is a polynomial, applying p(A) to a vector only requires matrix-vector multiplication with A.

In order to quickly construct a p that is a good approximation to ϕ it is important that we choose a good basis. For functions supported on [-1, 1]the obvious choice is Chebyshev polynomials of the first kind. Such representations have already been used successfully for constructing polynomial spectral transformations and for approximating matrix-valued functions in quantum mechanics (see for example [13, 26, 1, 27, 51, 28, 4, 5, 3, 29, 30, 6]).

Recall that the Chebyshev polynomials of the first kind obey the following

three-term recurrence

$$T_{i+1}(z) = 2zT_i(z) - T_{i-1}(z), \ i \ge 1.$$
(7)

starting with $T_0(z) = 1$, $T_1(z) = z$. The Chebyshev polynomials also satisfy the following orthogonality condition and form a complete orthogonal set for the Hilbert space $L^2_{\mu}([-1,1]), d\mu(z) = (1-z^2)^{-1/2} dz$:

$$\int_{-1}^{1} \frac{T_i(z)T_j(z)}{\sqrt{1-z^2}} dz = \begin{cases} \pi, & i=j=0, \\ \frac{\pi}{2}, & i=j>0, \\ 0, & \text{otherwise.} \end{cases}$$
(8)

Since $\phi \in L^2_{\mu}([-1,1])$ it possesses a convergent Chebyshev series

$$\phi(z) = \sum_{i=0}^{\infty} b_i T_i(z), \qquad (9)$$

where the $\{b_i\}_{i=0}^{\infty}$ are defined as follows:

$$b_i = \frac{2 - \delta_{i0}}{\pi} \int_{-1}^1 \frac{\phi(z) T_i(z)}{\sqrt{1 - z^2}} dz,$$
(10)

where δ_{ij} represents the Dirac delta symbol. For a given α and β the $\{b_i\}$ are known analytically (see for example [31]),

$$b_{i} = \begin{cases} \left(\arccos(\alpha) - \arccos(\beta)\right) / \pi, & i = 0, \\ 2\left(\sin\left(i \arccos(\alpha)\right) - \sin\left(i \arccos(\beta)\right)\right) / i\pi, & i > 0. \end{cases}$$
(11)

An obvious choice for constructing p is to fix a degree m and truncate the Chebyshev series of ϕ ,

$$p_m(z) = \sum_{i=0}^m b_i T_i(z).$$
 (12)

Due to the discontinuities of ϕ , p_m does not converge to ϕ uniformly as $m \to \infty$. The lack of uniform convergence is not an issue as long as the filter polynomial separates the wanted and unwanted eigenvalues. Figure 1 illustrates two polynomial spectral transformations constructed by approximating ϕ on two different intervals. Even with the rapid oscillations near the ends of the subinterval, these polynomials are still good candidates for separating the spectrum.

Figure 1: Chebyshev approximation of the ideal filter ϕ using a degree 80 polynomial. Left: $[\alpha, \beta] = [.1, .3]$, right: $[\alpha, \beta] = [-1, -.5]$.

Figure 1 shows approximations of the ideal filter ϕ for two different subintervals of [-1, 1], using a fixed degree m = 80. In the left subfigure the interval of interest is located around the middle of the spectrum $[\alpha, \beta] = [.1, .3]$, while in the right subfigure the interval of interest is located at the left extreme part $[\alpha, \beta] = [-1, -.5]$. Note that the oscillations near the discontinuities do not prevent the polynomials from separating the spectrum.

Since A is sparse, multiplying p(A) by a vector can be done efficiently in parallel using a vectorized version of Clenshaw's algorithm [32] when p is represented in a Chebyshev basis. Moreover Clenshaw's algorithm can be run entirely in real arithmetic whenever the Chebyshev coefficients of p are real.

2.3. Filtered Lanczos as an algorithm

Assuming we've constructed a polynomial filter p, we can approximate eigenvalues of A by first approximating eigenvalues and eigenvectors of p(A)using a simple version of the Lanczos method [2]. Many of the matrices arising in practical applications possess repeated eigenvalues, requiring the use of block Lanczos algorithm [17], so we describe the block version of FLP as it contains the standard algorithm as a special case.

Given a block size r and a matrix $Q \in \mathbb{R}^{n \times r}$ with orthonormal columns, the filtered Lanzos procedure iteratively constructs an orthonormal basis for the Krylov subspace generated by p(A) and Q:

$$\mathcal{K}_k(p(A),Q) = \operatorname{span}\{Q, p(A)Q, \dots, p(A)^{k-1}Q\}.$$
(13)

Let us denote by $Q_k \in \mathbb{R}^{n \times rk}$ the matrix whose columns are generated by k-1 steps of the block Lanczos algorithm. Then, for each integer k we have

 $Q_k^T Q_k = I$ and range $(Q_k) = \text{span}(\mathcal{K}_k(p(A), Q))$. Since p(A) is symmetric the columns of Q_k can be generated using short recurrences. This implies that there exists symmetric $\{D_i\}_{i=1}^k$ and upper-triangular $\{S_i\}_{i=1}^k$, $D_i, S_i \in \mathbb{R}^{r \times r}$, such that

$$p(A)Q_k = Q_{k+1}T_k, (14)$$

where

$$\tilde{T}_{k} = \begin{bmatrix} T_{k} \\ S_{k}E_{k}^{T} \end{bmatrix}, \quad T_{k} = \begin{bmatrix} D_{1} & S_{1}^{T} & & & \\ S_{1} & D_{2} & S_{2}^{T} & & & \\ & S_{2} & D_{3} & \ddots & & \\ & & \ddots & \ddots & S_{k-1}^{T} \\ & & & S_{k-1} & D_{k} \end{bmatrix}, \quad (15)$$

and $E_k \in \mathbb{R}^{kr \times r}$ denotes the last r columns of the identity matrix of size $kr \times kr$. Left multiplying (14) by Q_k^T gives the Rayleigh-Ritz projection

$$Q_k^T p(A) Q_k = T_k. (16)$$

The matrix T_k is symmetric and banded, with a semi-bandwidth of size r. The eigenvalues of T_k are the Ritz values of p(A) associated with the subspace spanned by the columns of Q_k and for sufficiently large k the dominant eigenvalues of p(A) will be well approximated by these Ritz values. Of course we aren't actually interested in the eigenvalues of p(A) but those of A. We can recover these eigenvalues by using the fact that p(A) has the same eigenvectors as A. Assuming that an eigenvector v of p(A) has been computed accurately we can recover the corresponding eigenvalue λ of A from the Rayleigh quotient of v:

$$\lambda = \frac{v^T A v}{v^T v}.\tag{17}$$

In practice we will often have only a good approximation \hat{v} of v. The approximate eigenvector \hat{v} will be a Ritz vector of p(A) associated with Q_k . To compute these Ritz vectors we first compute an eigendecomposition of T_k . Since T_k is real and symmetric there exists an orthogonal matrix $W_k \in \mathbb{R}^{rk \times rk}$ and a diagonal matrix $\Lambda_k \in \mathbb{R}^{rk \times rk}$ such that

$$T_k W_k = W_k \Lambda_k. \tag{18}$$

Combining (14) and (18), the Ritz vectors of p(A) are formed as $\hat{V}_k = Q_k W_k$.

3. Cucheb: a GPU implementation of the filtered Lanczos procedure

A key advantage of the filtered Lanczos procedure is that it requires only matrix-vector multiplication, an operation that uses relatively low memory and that is typically easy to parallelize compared to solving large linear systems. FLP and related methods have already been successfully implemented on multi-core CPUs and distributed memory machines [3].

3.1. The GPU architecture

A graphical processing unit (GPU) is a single instruction multiple data (SIMD) scalable model which consists of multi-threaded streaming Multiprocessors (SMs), each one equipped with multiple scalar processor cores (SPs), with each SP performing the same instruction on its local portion of data. While they were initially developed for the purposes of graphics processing, GPUs were adapted in recent years for general purpose computing. The development of the Compute Unified Device Architecture (CUDA) [33] parallel programming model by Nvidia, an extension of the C language, provides an easy way for computational scientists to take advantage of the GPU's raw power.

Although the CUDA programming language allows low level access to Nvidia GPUs, the Cucheb library accesses the GPU through high level routines included as part of the Nvidia CUDA Toolkit. The main advantage of this is that one only has to update to the latest version of the Nvidia's toolkit in order to make use of the latest GPU technology.

3.2. Implementation details of the Cucheb software package

In this section we discuss the details of our GPU implementation of FLP. Our implementation will consist of a high-level, open source C++ library called *Cucheb* [34] which depends only on the Nvidia CUDA Toolkit [35, 33] and standard C++ libraries, allowing for easy interface with Nvidia brand GPUs. At the user level, the Cucheb software library consists of three basic data structures:

- cuchebmatrix
- cucheblanczos
- cuchebpoly

The remainder of this section is devoted to describing the role of each of these data structures.

3.2.1. Sparse matrices and the cuchebmatrix object

The first data structure, called cuchebmatrix, is a container for storing and manipulating sparse matrices. This data structure consists of two sets of pointers, one for data stored in CPU memory and one for data stored in GPU memory. Such a duality of data is often necessary for GPU computations if one wishes to avoid costly memory transfers between the CPU and GPU. To initialize a cuchebmatrix object one simply passes the path to a symmetric matrix stored in the matrix market file format [36]. The following segment of Cucheb code illustrates how to initialize a cuchebmatrix object using the matrix H2O downloaded from the University of Florida sparse matrix collection [37]:

```
#include "cucheb.h"
int main(){
    // declare cuchebmatrix variable
    cuchebmatrix ccm;
    // create string with matrix market file name
    string mtxfile("H20.mtx");
    // initialize ccm using matrix market file
    cuchebmatrix_init(&mtxfile, &ccm);
    .
    .
    .
}
```

The function cuchebmatrix_init opens the data file, checks that the matrix is real and symmetric, allocates the required memory on the CPU and GPU, reads the data into CPU memory, converts it to an appropriate format for the GPU and finally copies the data into GPU memory. By appropriate format we mean that the matrix is stored on the GPU in compressed sparse row (CSR) format with no attempt to exploit the symmetry of the matrix. CSR is used as it is one of the most generic storage scheme for performing sparse matrix-vector multiplications using the GPU. (See [38, 39] and references therein for a discussion on the performance of sparse matrix-vector multiplications in the CSR and other formats.) Once a cuchebmatrix object has been created, sparse matrix-vector multiplications can then be performed on the GPU using the Nvidia CUSPARSE library [40].

3.2.2. Lanczos and the cucheblanczos object

The second data structure, called cucheblanczos, is a container for storing and manipulating the vectors and matrices associated with the Lanczos process. As with the cuchebmatrix objects, a cucheblanczos object possesses pointers to both CPU and GPU memory. While there is a function for initializing a cucheblanczos object, the average user should never do this explicitly. Instead they should call a higher level routine like cuchebmatrix_lanczos which takes as an argument an uninitialized cucheblanczos object. Such a routine will then calculate an appropriate number of Lanczos vectors based on the input matrix and initialize the cucheblanczos object accordingly.

Once a cuchebmatrix object and corresponding cucheblanczos object have been initialized, one of the core Lanczos algorithms can be called to iteratively construct the Lanczos vectors. Whether iterating with A or p(A), the core Lanczos routines in Cucheb are essentially the same. The algorithm starts by constructing an orthonormal set of starting vectors (matrix Q in (13)). Once the vectors are initialized the algorithm expands the Krylov subspace, peridiocally checking for convergence. To check convergence the projected problem (18) is copied to the CPU, the Ritz values are computed and the residuals are checked. If the algorithm has not converged the Krylov subspace is expanded further and the projected problem is solved again. For stability reasons Cucheb uses full reorthogonalization to expand the Krylov subspace, making the algorithm more akin to the Arnoldi method [41]. Due to the full reorthogonalization, the projected matrix T_k from (18) will not be symmetric exactly but it will be symmetric to machine precision, which justifies the use of an efficient symmetric eigensolver (see for example [42]). The cost of solving the projected problem is negligible compared to expanding the Krylov subspace, so we can afford to check convergence often. All the operations required for reorthogonalization are performed on the GPU using the Nvidia CUBLAS library [43]. Solving the eigenvalue problem for T_k is done on the CPU using a special purpose built banded symmetric eigensolver included in the Cucheb library.

It is possible to use selective reorthogonalization [44, 23, 45] or implicit restarts [14, 15], though we don't make use of these techniques in our code. In Section 4 we will see that the dominant cost in the algorithm is the matrixvector multiplication with p(A), so reducing the number of products with p(A) is the easiest way to shorten the computation time. Techniques like implicit restarting can often increase the number of iterations if the size of the maximum allowed Krylov subspace is too small, meaning we would have to perform more matrix-vector multiplications. Our experience suggests that the best option is to construct a good filter polynomial and then compute increasingly larger Krylov subspaces until the convergence criterion is met.

All the Lanczos routines in Cucheb are designed to compute all the eigenvalues in a user prescribed interval $[\alpha, \beta]$. When checking for convergence the Ritz values and vectors are sorted according to their proximity to $[\alpha, \beta]$ and the method is considered to be converged when all the Ritz values in $[\alpha, \beta]$ as well as a few of the nearest Ritz values outside the interval have sufficiently small residuals. If the iterations were done using A then the computation is complete and the information is copied back to the CPU. If the iterations were done with p(A) the Rayleigh quotients are first computed on the GPU and then the information is copied back to the CPU.

To use Lanczos with A to compute all the eigenvalues in $[\alpha, \beta]$ a user is required to input five variables:

- 1. a lower bound on the desired spectrum (α)
- 2. an upper bound on the desired spectrum (β)
- 3. a block size
- 4. an initialized cuchebmatrix object
- 5. an uninitialized cucheblanczos object

The following segment of Cucheb code illustrates how to do this using the function cuchebmatrix_lanczos for the interval $[\alpha, \beta] = [.5, .6]$, a block size of 3 and an already initialized cuchebmatrix object:

#include "cucheb.h"

```
int main(){
    // initialize cuchebmatrix object
    cuchebmatrix ccm;
    string mtxfile("H20.mtx");
    cuchebmatrix_init(&mtxfile, &ccm);
    // declare cucheblanczos variable
    cucheblanczos ccl;
    // compute eigenvalues in [.5,.6] using block Lanczos
    cuchebmatrix_lanczos(.5, .6, 3, &ccm, &ccl);
    .
    .
    .
}
```

This function call will first approximate the upper and lower bounds on the spectrum of the **cuchebmatrix** object. It then uses these bounds to make sure that the interval $[\alpha, \beta]$ is valid. If it is, it will adaptively build up the Krylov subspace as described above, periodically checking for convergence. For large matrices or subintervals well inside the spectrum, standard Lanczos may fail to converge all together. A better choice is to call the routine **cuchebmatrix_filteredlanczos** which automatically constructs a filter polynomial and then uses FLP to compute all the eigenvalues in $[\alpha, \beta]$.

3.2.3. Filter polynomials and the cuchebpoly object

To use FLP one needs a way to store and manipulate filter polynomials stored in a Chebyshev basis. In Cucheb this is done with the cuchebpoly object. The cuchebpoly object contains pointers to CPU and GPU memory which can be used to construct and store filter polynomials. For the filter polynomials from Section 2 one only needs to store the degree, the Chebyshev coefficients and upper and lower bounds for the spectrum of A.

As with cucheblanczos objects, a user typically will not need to initialize a cuchebpoly object themselves as it will be handled automatically by a higher level routine. In cuchebmatrix_filteredlanczos for example, not only is the cuchebpoly object for the filter polynomial initialized but also the degree at which the Chebyshev approximation should be truncated is computed. This is done using a simple formula based on heuristics and verified by experiment. Assuming the spectrum of A is in [-1, 1], a "good" degree m for $[\alpha, \beta] \subset [-1, 1]$ is computed using the following formula:

$$m = \min\{m > 0 : ||p_m - \phi|| < \epsilon ||\phi||\},$$
(19)

where ||f|| is the weighted Chebyshev 2-norm. The tolerance ϵ is a parameter and is chosen experimentally, with the goal of maximizing the separation power of the filter while keeping the polynomial degree and consequently the computation time low.

Figure 2: Chebyshev and approximation of the ideal filter ϕ . Left: $[\alpha, \beta] = [.1, .3]$ with an optimal degree of 48, right: $[\alpha, \beta] = [-1, -.5]$ with an optimal degree of 10.

Figure 2 uses the same ideal filters from Figure 1 but this time computes the filter degree based on (19). In the left subfigure the interval of interest is located around the middle of the spectrum $[\alpha, \beta] = [.1, .3]$ and the distance between α and β is relatively small, giving a filter degree of 48. In the right subfigure the interval of interest is located at the left extreme part of the spectrum $[\alpha, \beta] = [-1, -.5]$ and the distance α and β is relatively large, giving a filter degree of 10. Although these filters seem like worse approximations than those in Figure 1, the lower degrees lead to much shorter computation times.

The following segment of Cucheb code illustrates how to use the function cuchebmatrix_filteredlanczos to compute all the eigenvalues in the interval $[\alpha, \beta] = [.5, .6]$ of an already initialized cuchebmatrix object using FLP with a block size of 3:

```
#include "cucheb.h"
int main(){
    // initialize cuchebmatrix object
    cuchebmatrix ccm;
    string mtxfile("H20.mtx");
    cuchebmatrix_init(&mtxfile, &ccm);
    // declare cucheblanczos variable
    cucheblanczos ccl;
    // compute eigenvalues in [.5,.6] using filtered Lanczos
    cuchebmatrix_filteredlanczos(.5, .6, 3, &ccm, &ccl);
    .
    .
    .
    .
}
```

4. Experiments

In this section we illustrate the performance of our GPU implementation of the filtered Lanczos procedure. Our test matrices (Hamiltonians) originate from electronic structure calculations. In this setting, one is typically interested in computing a few eigenvalues around the Fermi level of each Hamiltonian. The Hamiltonians were generated using the PARSEC package [46] and can be also found in the University of Florida sparse matrix collection [37].³ These Hamiltonians are real, symmetric, and have clustered, as well as multiple, eigenvalues. Table 1 lists the size n, the total number of non-zero entries nnz, as well as the endpoints of the spectrum of each matrix, i.e., the interval defined by the algebraically smallest/largest eigenvalues. The average number of nonzero entries per row for each Hamiltonian

³https://www.cise.ufl.edu/research/sparse/matrices/

Figure 3: Sparsity pattern of the PARSEC matrices. Left: Si41Ge41H72. Right: Si87H76.

is quite large, a consequence of the high-order discretization and the addition of a (dense) 'non-local' term. Figure 3 plots the sparsity pattern of matrices Si41Ge41H72 (left) and Si87H76 (right).

All GPU experiments in this section were implemented using the Cucheb library and performed on the same machine which has an Intel Xeon E5-2680 v3 2.50GHz processor with 128GB of CPU RAM and two Nvidia K40 GPUs each with 12GB of GPU RAM and 2880 compute cores. We make no attempt to access multiple GPUs and all the experiments were performed using a single K40.

Matrix	n	nnz	nnz/n	Spectral interval	
Ge87H76	112,985	7,892,195	69.9	[-1.21e+0,	3.28e+1]
Ge99H100	112,985	8,451,395	74.8	[-1.23e+0,	3.27e + 1]
Si41Ge41H72	185,639	15,011,265	80.9	[-1.21e+0,	4.98e+1]
Si87H76	240,369	10,661,631	44.4	[-1.20e+0,	4.31e+1]
Ga41As41H72	268,096	18,488,476	69.0	[-1.25e+0,	1.30e + 3]

Table 1: A list of the PARSEC matrices used to evaluate our GPU implementation, where n is the dimension of the matrix, nnz is the number of nonzero entries and $[\lambda_{\min}, \lambda_{\max}]$ is the spectral interval.

Exploiting eigenvalue solvers that are based on matrix factorizations, e.g., shift-and-invert techniques, has been shown to be impractical for matrices of the PARSEC matrix collection [47, 48, 50]. The reason is that performing

the LU factorization of each Hamiltonian results in a huge amount of fill-in in the associated triangular factors, requiring an excessive amount of memory and computations [47]. On the other hand, polynomial filtering accesses the Hamiltonians in their original form and only requires an efficient matrixvector multiplication routine. Polynomial filtering has often been reported to be the most efficient numerical method for solving eigenvalue problems with the PARSEC matrix collection [3, 1, 4, 5, 6, 7]. This observation led to the development of FILTLAN, a C/C++ software package which implements the filtered Lanczos procedure with partial reorthgonalization [1] for serial architectures. The Cucheb library featured in this paper, although implemented in CUDA, shares many similarities with FILTLAN. There are, however, a few notable differences. Cucheb does not implement partial reorthgonalization as is the case in FILTLAN. Moreover, Cucheb includes the ability to use block counterparts of the Lanczos method which can be more efficient in the case of multiple or clustered eigenvalues. Moreover FILTLAN uses a more complicated least-squares filter polynomial while Cucheb utilizes the fitlers described in section 2.

4.1. GPU benchmarking

The results of the GPU experiments are summarized in Table 2. The variable 'interval' for each Hamiltonian was set so that it included roughly the same number of eigenvalues from the left and right side of the Fermi level, and in total 'eigs' eigenvalues. For each matrix and interval $[\alpha, \beta]$ we repeated the same experiment five times, each time using a different degree m for the filter polynomial. The variable 'iters' shows the number of FLP iterations, while 'MV' shows the total number of matrix-vector products (MV) with A, which is computed using the formula 'MV' $= rm \times$ 'iters'. Throughout this section, the block size of the FLP will be equal to r = 3. Finally, the variables 'time' and 'residual' show the total compute time and maximum relative residual of the computed eigenpairs. The first four rows for each matrix correspond to executions where the degree m was selected a priori. The fifth row corresponds to an execution where the degree was selected automatically by our implementation, using the mechanism described in (19). As expected, using larger values for m leads to faster convergence in terms of total iterations, since higher degree filters are better at separating the wanted and unwanted portions of the spectrum. Although larger degrees lead to less iterations, the amount of work in each filtered Lanczos iteration

Matrix	interval	eigs	m	iters	MV	time	residual
Ge87H76	[-0.645, -0.0053]	212	50	210	31,500	31	1.7e - 14
			100	180	54,000	40	4.0e - 13
			150	150	67,500	44	$7.4e{-14}$
			200	150	90,000	56	$6.3e{-14}$
			49	210	30,870	31	$9.0e{-14}$
Ge99H100	[-0.650, -0.0096]	250	50	210	31,500	32	6.2e - 13
			100	180	54,000	41	8.6e - 13
			150	180	81,000	56	5.0e - 13
			200	180	108,000	70	$1.1e{-13}$
			49	210	30,870	32	$3.2e{-13}$
	[-0.640, -0.0028]	218	50	210	31,500	56	6.4e - 13
			100	180	54,000	73	$2.0e{-11}$
Si41Ge41H72			150	180	81,000	99	5.6e - 14
			200	150	90,000	104	5.0e - 13
			61	180	32,940	52	$8.9e{-13}$
	[-0.660, -0.3300]	107	50	150	22,500	38	3.5e - 14
			100	90	27,000	35	$4.0e{-}15$
Si87H76			150	120	54,000	63	$9.1e{-}15$
			200	90	54,000	60	$1.3e{-13}$
			98	90	26,460	35	1.2e - 14
Ga41As41H72	[-0.640, 0.0000]	201	200	240	144,000	225	$1.5e{-15}$
			300	180	162,000	236	$2.1e{-}15$
			400	180	216,000	306	$2.5e{-}15$
			500	180	270,000	375	$1.0e{-12}$
			308	180	166,320	242	1.5e-15

is also increasing proportionally. This might lead to an increase of the actual computational time, an effect verified for each one of the matrices in Table 2.

Table 2: Computing the eigenpairs inside an interval using FLP with various filter polynomial degrees. Times listed are in seconds.

Table 3 compares the percentage of total computation time required by the different subprocesses of the FLP method. We denote the preprocessing time, which consists solely of approximating the upper and lower bounds of the spectrum for A, by 'PREPROC'. We also denote the total amount of time spent in the full reorthogonalization and the total amount of time spent in performing all MV products of the form p(A)v on the GPU, by 'ORTH' and 'MV' respectively. As we can verify, all matrices in this experiment devoted no more than 12% of the total compute time to estimating the spectral interval (i.e. the eigenvalues λ_{\min} and λ_{\max}). For each one of the PARSEC test matrices, the dominant cost came from the MV products, due to their relatively large number of non-zero entries. Note that using a higher degree m will shift the cost more towards the MV products, since the Lanczos procedure will typically converge in fewer outer steps and thus the orthogonalization cost reduces.

We would like to note that the Cucheb software package is capable of running Lanczos without filtering. We originally intended to compare filtered Lanczos with standard Lanczos on the GPU, however for the problems considered in this paper the number of Lanczos vectors required for convergence exceeded the memory of the K40 GPU. This suggests that for these particular problems filtering is not only beneficial for performance but also necessary if this particular hardware is used.

4.2. CPU-GPU comparison

Figure 4 shows the speedup of the GPU FLP implementation over the CPU-based counterpart. The CPU results were obtained by executing the FILTLAN software package on the Mesabi linux cluster at University of Minnesota Supercomputing Institute. Mesabi consists of 741 nodes of various configurations with a total of 17,784 compute cores provided by Intel Xeon E5-2680 v3 processors. Each node features two sockets, each socket with twelve physical cores, and each core with a clock speed of 2.50 GHz. Each node is also equipped with 64 GB of RAM memory. The FILTLAN package has the option to link the Intel Math Kernel Library (MKL) when it, as well as a compatible Intel compiler are available. For these experiments we used the Intel compiler icpc version 11.3.2.

We have divided the comparison into four parts: a "low degree" situation when m = 50 (m = 200 for Ga41As41H72), and a "high degree" situation when m = 100 (m = 300 for Ga41As41H72) and within each of these we also executed FILTLAN using both 1 thread and 24 threads. The multithreading was handled entirely by the MKL. In the single thread case, the GPU implementation obtains a speedup which ranges between 10 and 14. In the 24 thread case, which corresponds to one thread per core on this machine, the speedups ranged between 2 and 3.

Matrix	m	iters	PREPROC	ORTH	MV
	50	210	7%	22%	52%
	100	180	5%	13%	71%
Ge87H76	150	150	5%	9%	80%
	200	150	4%	7%	84%
	49	210	7%	21%	52%
Ge99H100	50	210	7%	21%	53%
	100	180	5%	13%	71%
	150	180	4%	10%	79%
	200	180	3%	8%	83%
	49	210	7%	21%	53%
Si41Ge41H72	50	210	10%	19%	55%
	100	180	8%	12%	72%
	150	180	6%	9%	80%
	200	150	5%	6%	84%
	61	180	11%	17%	61%
	50	150	11%	22%	54%
	100	90	12%	12%	70%
Si87H76	150	120	7%	10%	78%
	200	90	7%	7%	83%
	98	90	12%	13%	70%
Ga41As41H72	200	240	4%	8%	82%
	300	180	4%	5%	88%
	400	180	3%	4%	91%
	500	180	2%	3%	93%
	308	180	4%	5%	89%

Table 3: Percentage of total compute time required by various components of the algorithm. For all these examples the dominant computational cost are the matrix-vector multiplications (MV).

5. Conclusion

In this work we presented a GPU implementation of the filtered Lanczos procedure for solving large and sparse eigenvalue problems such as those that arise from real-space DFT methods in electronic structure calculations. Our experiments indicate that the use of GPU architectures in the context of

CPU v. GPU speedups: PARSEC matrices

Figure 4: Speedup of the GPU FLP implementation over the CPU (FILTLAN) for the PARSEC test matrices.

electronic structure calculations can provide a speedup of at least a factor of 10 over a single core CPU implementation and at least of factor of 2 for a 24 core implementation.

Possible future research directions include the utilization of more than one GPU to perform the filtered Lanczos procedure in computing environments with access to multiple GPUs. Each GPU can then be used to either perform the sparse matrix-vector products and other operations of the FLP in parallel, or compute all eigenpairs in a sub-interval of the original interval. In the later case the implementation proposed in this paper can be used without any modifications. Another interesting extension would be to use additional customization and add support for other sparse matrix formats. A dense matrix version of the proposed implementation would also be of interest for solving sequences of eigenvalue problems as in [49].

References

- H. Fang, Y. Saad, A filtered Lanczos procedure for extreme and interior eigenvalue problems, SIAM J. Sci. Comp. 34 (2012) A2220–A2246.
- [2] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Standards 45 (1950) 255–282.
- [3] G. Schofield, J. R. Chelikowsky, Y. Saad, A spectrum slicing method

for the Kohn–Sham problem, Comput. Phys. Commun. 183 (2012) 497 – 505.

- [4] Y. Zhou, A block Chebyshev-Davidson method with inner-outer restart for large eigenvalue problems, J. Comput. Phys. 229 (24) (2010) 9188 – 9200.
- [5] Y. Zhou, Y. Saad, A Chebyshev-Davidson algorithm for large symmetric eigenproblems, SIAM J. Matrix Anal. Appl. 29 (3) (2007) 954–971.
- [6] Y. Zhou, Y. Saad, M. L. Tiago, J. R. Chelikowsky, Self-consistent-field calculations using Chebyshev-filtered subspace iteration, J. Comput. Phys. 219 (1) (2006) 172 – 184.
- [7] Y. Saad, A. Stathopoulos, J. Chelikowsky, K. Wu, S. Öğüt, Solution of large eigenvalue problems in electronic structure calculations, BIT 36 (3) (1996) 563–578.
- [8] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864–B871.
- [9] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133–A1138.
- [10] J. R. Chelikowsky, Y. Saad, I. Vasiliev, Atoms and clusters, in: Time-Dependent Density Functional Theory, Vol. 706 of Lecture notes in Physics, Springer-Verlag, Berlin, Heidelberg, 2006, Ch. 17, pp. 259–269.
- [11] W. R. Burdick, Y. Saad, L. Kronik, M. Jain, J. R. Chelikowsky, Parallel implementations of time-dependent density functional theory, Comput. Phys. Commun. 156 (2003) 22–42.
- [12] V. Kalantzis, A GPU implementation of the filtered Lanczos algorithm for interior eigenvalue problems (2015).
- [13] J. L. Aurentz, GPU accelerated polynomial spectral transformation methods, Ph.D. thesis, Washington State University (2014).
- [14] K. Wu, H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl. 22 (2) (2000) 602– 616.

- [15] J. Baglama, D. Calvetti, L. Reichel, IRBL: An implicitly restarted block-Lanczos method for large-scale hermitian eigenproblems, SIAM J. Sci. Comp. 24 (5) (2003) 1650–1677.
- [16] D. Calvetti, L. Reichel, D. C. Sorensen, An implicitly restarted Lanczos method for large symmetric eigenvalue problems, Electron. Trans. Numer. Anal. 2 (1) (1994) 21.
- [17] J. Cullum, W. E. Donath, A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices, in: Decision and Control including the 13th Symposium on Adaptive Processes, 1974 IEEE Conference on, IEEE, 1974, pp. 505–509.
- [18] C. C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, Ph.D. thesis, University of London (1971).
- [19] D. C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations, Tech. rep. (1996).
- [20] C. A. Beattie, M. Embree, D. C. Sorensen, Convergence of polynomial restart krylov methods for eigenvalue computations, SIAM Rev. 47 (3) (2005) 492–515.
- [21] R. B. Lehoucq, Analysis and implementation of an implicitly restarted Arnoldi iteration, Ph.D. thesis, Rice University (1995).
- [22] Y. Saad, On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J. Numer. Anal. 17 (5) (1980) 687–706.
- [23] H. D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp. 42 (165) (1984) 115–142.
- [24] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Second Edition, SIAM, Philadelphia, PA, USA, 2011.
- [25] D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, PA, USA, 2007.
- [26] C. Bekas, E. Kokiopoulou, Y. Saad, Computation of large invariant subspaces using polynomial filtered Lanczos iterations with applications

in density functional theory, SIAM J. Matrix Anal. Appl. 30 (1) (2008) 397–418.

- [27] L. O. Jay, H. Kim, Y. Saad, J. R. Chelikowsky, Electronic structure calculations for plane-wave codes without diagonalization, Comput. Phys. Commun. 118 (1) (1999) 21–30.
- [28] Y. Saad, Filtered conjugate residual-type algorithms with applications, SIAM J. Matrix Anal. Appl. 28 (3) (2006) 845–870.
- [29] R. N. Silver, H. Roeder, A. F. Voter, J. D. Kress, Kernel polynomial approximations for densities of states and spectral functions, J. Comput. Phys. 124 (1) (1996) 115–130.
- [30] A. Weiße, G. Wellein, A. Alvermann, H. Fehske, The kernel polynomial method, Rev. Modern Phys. 78 (1) (2006) 275.
- [31] D. Jackson, The Theory of Approximation, Vol. 11 of Colloquium publications, AMS, New York, NY, USA, 1930.
- [32] C. W. Clenshaw, A note on the summation of Chebyshev series, Math. Tab. Wash. 9 (1955) 118–120.
- [33] N. Corporation, NVIDIA CUDA C Programming Guide, v7.0 Edition (October 2015).
- [34] J. L. Aurentz, V. Kalantzis, Y. Saad, Cucheb, https://github.com/ jaurentz/cucheb (2016).
- [35] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with cuda, Queue 6 (2) (2008) 40–53.
- [36] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, J. J. Dongarra, Matrix market: A web resource for test matrix collections, in: Proceedings of the IFIP TC2/WG2.5 Working Conference on Quality of Numerical Software: Assessment and Enhancement, Chapman & Hall, Ltd., London, UK, UK, 1997, pp. 125–137.
- [37] T. A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software 38 (1) (2011) 1–25.

- [38] I. Reguly, M. Giles, Efficient sparse matrix-vector multiplication on cache-based gpus, in: Innovative Parallel Computing, IEEE, 2012, pp. 1–12.
- [39] N. Bell, M. Garland, Implementing sparse matrix-vector multiplication on throughput-oriented processors, in: SC '09: Proc. Conference on High Performance Computing Networking, Storage and Analysis, 2009.
- [40] N. Corporation, CUSPARSE Library User Guide, v7.0 Edition (October 2015).
- [41] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1) (1951) 17–29.
- [42] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, PA, USA, 1980.
- [43] N. Corporation, CUBLAS Library User Guide, v7.0 Edition (October 2015).
- [44] B. N. Parlett, D. S. Scott, The Lanczos algorithm with selective orthogonalization, Math. Comp. 33 (145) (1979) 217–238.
- [45] H. D. Simon, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods, Linear Algebra Appl. 61 (1984) 101–131.
- [46] L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain, X. Huang, Y. Saad, J. R. Chelikowsky, PARSEC-the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nano-structures, Phys. Status Solidi (B) 243 (5) (2006) 1063–1079.
- [47] V. Kalantzis, J. Kestyn, E. Polizzi, Y. Saad, Domain decomposition contour integration approaches for symmetric eigenvalue problems (2016).
- [48] V. Kalantzis, R. Li, Y. Saad, Spectral Schur complement techniques for symmetric eigenvalue problems, Electron. Trans. Numer. Anal. 45 (2016) 305–329.
- [49] M. Berljafa, D. Wortmann, E. Di Napoli, An optimized and scalable eigensolver for sequences of eigenvalue problems, Concurr. Comput. 27 (4) (2015) 905–922.

- [50] Y. Xi, Y. Saad, Computing Partial Spectra with Least-Squares Rational Filters, SIAM J. Sci. Comp. 38 (2016) A3020–A3045.
- [51] R. Li, Y. Xi, E. Vecharynski, C. Yang, Y. Saad, A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems, SIAM J. Sci. Comp. 38 (2016) A2512–A2534.