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Abstract

This paper describes the software package Cucheb, a GPU implementation
of the filtered Lanczos procedure for the solution of large sparse symmetric
eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen
polynomial spectral transformation to accelerate convergence of the Lanczos
method when computing eigenvalues within a desired interval. This method
has proven particularly effective for eigenvalue problems that arise in elec-
tronic structure calculations and density functional theory. We compare our
implementation against an equivalent CPU implementation and show that
using the GPU can reduce the computation time by more than a factor of
10.
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Program title: Cucheb

Licensing provisions: MIT

Programming language: CUDA C/C++

Nature of problem: Electronic structure calculations require the computation of all

eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined

real interval.

Solution method: To compute all the eigenvalues within a given interval a poly-

nomial spectral transformation is constructed that maps the desired eigenvalues

of the original matrix to the exterior of the spectrum of the transformed ma-

trix. The Lanczos method is then used to compute the desired eigenvectors of

the transformed matrix, which are then used to recover the desired eigenvalues of

the original matrix. The bulk of the operations are executed in parallel using a

graphics processing unit (GPU).

Runtime: Variable, depending on the number of eigenvalues sought and the size

and sparsity of the matrix.

1. Introduction

This paper describes the software package Cucheb, a GPU implementation
of the filtered Lanczos procedure [1]. The filtered Lanczos procedure (FLP)
uses carefully chosen polynomial spectral transformations to accelerate the
computation of all the eigenvalues and corresponding eigenvectors of a real
symmetric matrix A inside a given interval. The chosen polynomial maps the
eigenvalues of interest to the extreme part of the spectrum of the transformed
matrix. The Lanczos method [2] is then applied to the transformed matrix
which typically converges quickly to the invariant subspace corresponding
to the extreme part of the spectrum. This technique has been particularly
effective for large sparse eigenvalue problems arising in electronic structure
calculations [3, 4, 5, 6, 7].

In the density functional theory framework (DFT) the solution of the
all-electron Schrödinger equation is replaced by a one-electron Schrödinger
equation with an effective potential which leads to a nonlinear eigenvalue
problem known as the Kohn-Sham equation [8, 9]:

[
−∇

2

2
+ Vion(r) + VH(ρ(r), r) + VXC(ρ(r), r)

]
Ψi(r) = EiΨi(r), (1)

where Ψi(r) is a wave function and Ei is a Kohn-Sham eigenvalue. The
ionic potential Vion reflects contributions from the core and depends on the
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position r only. Both the Hartree and the exchange-correlation potentials
depend on the charge density:

ρ(r) = 2
nocc∑

i=1

|Ψi(r)|2, (2)

where nocc is the number of occupied states (for most systems of interest this
is half the number of valence electrons). Since the total potential Vtotal =
Vion+VH+VXC depends on ρ(r) which itself depends on eigenfunctions of the
Hamiltonian, Equation (1) can be viewed as a nonlinear eigenvalue problem
or a nonlinear eigenvector problem. The Hartree potential VH is obtained
from ρ by solving the Poisson equation ∇2VH(r) = −4πρ(r) with appropriate
boundary conditions. The exchange-correlation term VXC is the key to the
DFT approach and it captures the effects of reducing the problem from many
particles to a one-electron problem, i.e., from replacing wavefunctions with
many coordinates into ones that depend solely on space location r.

Self-consistent iterations for solving the Kohn-Sham equation start with
an initial guess of the charge density ρ(r), from which a guess for Vtotal is
computed. Then (1) is solved for Ψi(r)’s and a new ρ(r) is obtained from
(2) and the potentials are updated. Then (1) is solved again for a new ρ
obtained from the new Ψi(r)’s, and the process is repeated until the total
potential has converged.

A typical electronic structure calculation with many atoms requires the
calculation of a large number of eigenvalues, specifically the nocc leftmost
ones. In addition, calculations based on time-dependent density functional
theory [10, 11], require a substantial number of unoccupied states, states
beyond the Fermi level, in addition to the occupied ones. Thus, it is not
uncommon to see eigenvalue problems in the size of millions where tens of
thousands of eigenvalues may be needed.

Efficient numerical methods that can be easily parallelized in current
high-performance computing environments are therefore essential in elec-
tronic structure calculations. The high computational power offered by GPUs
has increased their presence in the numerical linear algebra community and
they are gradually becoming an important tool of scientific codes for solving
large-scale, computationally intensive eigenvalue problems. While GPUs are
mostly known for their high speedups relative to CPU-bound operations1,

1See also the MAGMA project at http://icl.cs.utk.edu/magma/index.html
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sparse eigenvalue computations can also benefit from hybrid CPU-GPU ar-
chitectures. Although published literature and scientific codes for the so-
lution of sparse eigenvalue problems on a GPU have not been as common
as those that exist for multi-CPU environments, recent studies conducted
independently by some of the authors of this paper demonstrated that the
combination of polynomial filtering eigenvalue solvers with GPUs can be
beneficial [12, 13].

The goal of this paper is twofold. First we describe our open source
software package Cucheb2 that uses the filtered Lanczos procedure to accel-
erate large sparse eigenvalue computations using Nvidia brand GPUs. Then
we demonstrate the effectiveness of using GPUs to accelerate the filtered
Lanczos procedure by solving a set of eigenvalue problems originating from
electronic stucture calculations with Cucheb and comparing it with a similar
CPU implementation.

The paper is organized as follows. Section 2 introduces the concept of
polynomial filtering for symmetric eigenvalue problems and provides the ba-
sic formulation of the filters used. Section 3 discusses the proposed GPU
implementation of the filtered Lanczos procedure. Section 4 presents compu-
tational results with the proposed GPU implementations. Finally, concluding
remarks are presented in Section 5.

2. The filtered Lanczos procedure

The Lanczos algorithm and its variants [2, 14, 15, 16, 17, 18, 19] are
well-established methods for computing a subset of the spectrum of a real
symmetric matrix. These methods are especially adept at approximating
eigenvalues lying at the extreme part of the spectrum [20, 21, 22, 23]. When
the desired eigenvalues are well inside the spectral interval these techniques
can become ineffective and lead to large computational and memory costs.
Traditionally, this is overcome by mapping interior eigenvalues to the exterior
part using a shift-and-invert spectral transformation (see for example [24] or
[25]). While shift-and-invert techniques typically work very well, they require
solving linear systems involving large sparse matrices which can be difficult
or even infeasible for certain classes of matrices.

The filtered Lanczos procedure (FLP) offers an appealing alternative for
such cases. In this approach interior eigenvalues are mapped to the exterior of

2https://github.com/jaurentz/cucheb
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the spectrum using a polynomial spectral transformation. Just as with shift-
and-invert, the Lanczos method is then applied to the transformed matrix [1].
The key difference is that polynomial spectral transformations only require
matrix-vector multiplication, a task that is often easy to parallelize for sparse
matrices. For FLP constructing a good polynomial spectral transformation
is the most important prepocessing step.

2.1. Polynomial spectral transformations

Let A ∈ Rn×n be symmetric and let

A = V ΛV T (3)

be its spectral decomposition, where V ∈ Rn×n is an orthogonal matrix and
Λ = diag (λ1, . . . , λn) is real and diagonal. A spectral transformation of A is
a mapping of the form

f(A) = V f(Λ)V T , (4)

where f(Λ) = diag (f(λ1), . . . , f(λn)) and f is any (real or complex) function
f defined on the spectrum of A. Standard examples in eigenvalue compu-
tations include the shift-and-invert transformation f(z) = (z − ρ)−1 and
f(z) = zk for subspace iteration.

A polynomial spectral transformation or filter polynomial is any spectral
transformation that is also a polynomial. For the filtered Lanczos procedure
a well constructed filter polynomial means rapid convergence and a good
filter polynomial p should satisfy the following requirements: a) the desired
eigenvalues of A are the largest in magnitude eigenvalues of p(A), b) the
construction of p requires minimal knowledge of the spectrum of A, and c)
multiplying a vector by p(A) is relatively inexpensive and easy to parallelize.

Our implementation of the FLP constructs polynomials that satisfy the
above requirements using techniques from digital filter design. The basic
idea is to construct a polynomial filter by approximating an “ideal” filter
which maps the desired eigenvalues of A to eigenvalues of largest magnitude
in p(A).

2.2. Constructing polynomial transformations

Throughout this section it is assumed that the spectrum of A is con-
tained entirely in the interval [−1, 1]. In practice, this assumption poses no
restrictions since the eigenvalues of A located inside the interval [λmin, λmax],
where λmin, λmax denote the algebraically smallest and largest eigenvalues of
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A respectively, can be mapped to the interval [−1, 1] by the following linear
transformation:

A := (A− cI)/e, c =
λmin + λmax

2
, e =

λmax − λmin

2
. (5)

Since λmin and λmax are exterior eigenvalues of A, one can obtain very good
estimates by performing a few Lanczos steps. We will see in Section 4 that
computing such estimates constitutes only a modest fraction of the total
compute time.

Given a subinterval [α, β] ⊂ [−1, 1] we wish to compute all eigenvalues
of A in [α, β] along with their corresponding eigenvectors. Consider first the
following spectral transformation:

φ(z) =

{
1, z ∈ [α, β],
0, otherwise.

(6)

The function φ is just an indicator function, taking the value 1 inside the
interval [α, β] and zero outside. When acting on A, φ maps the desired
eigenvalues of A to the repeated eigenvalue 1 for φ(A) and all the unwanted
eigenvalues to 0. Moreover, the invariant subspace which corresponds to
eigenvalues of A within the interval [α, β] is identical to the invariant sub-
space of φ(A) which corresponds to the multiple eigenvalue 1. Thus, applying
Lanczos on φ(A) computes the same invariant subspace, with the key differ-
ence being that the eigenvalues of interest (mapped to one) are well-separated
from the unwanted ones (mapped to zero), and rapid convergence can be es-
tablished. Unfortunately, such a transformation is not practically significant
as there is no cost-effective way to multiply a vector by φ(A).

A practical alternative is to replace φ with a polynomial p such that
p(z) ≈ φ(z) for all z ∈ [−1, 1]. Such a p will then map the desired eigenvalues
of A to a neighborhood of 1 for p(A). Moreover, since p is a polynomial,
applying p(A) to a vector only requires matrix-vector multiplication with A.

In order to quickly construct a p that is a good approximation to φ it is
important that we choose a good basis. For functions supported on [−1, 1]
the obvious choice is Chebyshev polynomials of the first kind. Such repre-
sentations have already been used successfully for constructing polynomial
spectral transformations and for approximating matrix-valued functions in
quantum mechanics (see for example [13, 26, 1, 27, 51, 28, 4, 5, 3, 29, 30, 6]).

Recall that the Chebyshev polynomials of the first kind obey the following
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three-term recurrence

Ti+1(z) = 2zTi(z)− Ti−1(z), i ≥ 1. (7)

starting with T0(z) = 1, T1(z) = z. The Chebyshev polynomials also satisfy
the following orthogonality condition and form a complete orthogonal set for

the Hilbert space L2
µ ([−1, 1]), dµ(z) = (1− z2)−1/2 dz:

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =





π, i = j = 0,
π
2
, i = j > 0,

0, otherwise.
(8)

Since φ ∈ L2
µ ([−1, 1]) it possesses a convergent Chebyshev series

φ(z) =
∞∑

i=0

biTi(z), (9)

where the {bi}∞i=0 are defined as follows:

bi =
2− δi0
π

∫ 1

−1

φ(z)Ti(z)√
1− z2

dz, (10)

where δij represents the Dirac delta symbol. For a given α and β the {bi}
are known analytically (see for example [31]),

bi =

{
(arccos(α)− arccos(β)) /π, i = 0,

2 (sin (i arccos(α))− sin (i arccos(β))) /iπ, i > 0.
(11)

An obvious choice for constructing p is to fix a degree m and truncate the
Chebyshev series of φ,

pm(z) =
m∑

i=0

biTi(z). (12)

Due to the discontinuities of φ, pm does not converge to φ uniformly as
m → ∞. The lack of uniform convergence is not an issue as long as the
filter polynomial separates the wanted and unwanted eigenvalues. Figure 1
illustrates two polynomial spectral transformations constructed by approx-
imating φ on two different intervals. Even with the rapid oscillations near
the ends of the subinterval, these polynomials are still good candidates for
separating the spectrum.
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Figure 1: Chebyshev approximation of the ideal filter φ using a degree 80 polynomial.
Left: [α, β] = [.1, .3], right: [α, β] = [−1,−.5].

Figure 1 shows approximations of the ideal filter φ for two different subin-
tervals of [−1, 1], using a fixed degree m = 80. In the left subfigure the inter-
val of interest is located around the middle of the spectrum [α, β] = [.1, .3],
while in the right subfigure the interval of interest is located at the left
extreme part [α, β] = [−1,−.5]. Note that the oscillations near the disconti-
nuities do not prevent the polynomials from separating the spectrum.

Since A is sparse, multiplying p(A) by a vector can be done efficiently
in parallel using a vectorized version of Clenshaw’s algorithm [32] when p is
represented in a Chebyshev basis. Moreover Clenshaw’s algorithm can be
run entirely in real arithmetic whenever the Chebyshev coefficients of p are
real.

2.3. Filtered Lanczos as an algorithm

Assuming we’ve constructed a polynomial filter p, we can approximate
eigenvalues of A by first approximating eigenvalues and eigenvectors of p(A)
using a simple version of the Lanczos method [2]. Many of the matrices
arising in practical applications possess repeated eigenvalues, requiring the
use of block Lanczos algorithm [17], so we describe the block version of FLP
as it contains the standard algorithm as a special case.

Given a block size r and a matrix Q ∈ Rn×r with orthonormal columns,
the filtered Lanzos procedure iteratively constructs an orthonormal basis for
the Krylov subspace generated by p(A) and Q:

Kk(p(A), Q) = span{Q, p(A)Q, . . . , p(A)k−1Q}. (13)

Let us denote by Qk ∈ Rn×rk the matrix whose columns are generated by
k− 1 steps of the block Lanczos algorithm. Then, for each integer k we have
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QT
kQk = I and range(Qk) = span(Kk(p(A), Q)). Since p(A) is symmetric the

columns of Qk can be generated using short recurrences. This implies that
there exists symmetric {Di}ki=1 and upper-triangular {Si}ki=1, Di, Si ∈ Rr×r,
such that

p(A)Qk = Qk+1T̃k, (14)

where

T̃k =

[
Tk

SkE
T
k

]
, Tk =




D1 ST1

S1 D2 ST2

S2 D3
. . .

. . . . . . STk−1

Sk−1 Dk



, (15)

and Ek ∈ Rkr×r denotes the last r columns of the identity matrix of size
kr × kr. Left multiplying (14) by QT

k gives the Rayleigh-Ritz projection

QT
k p(A)Qk = Tk. (16)

The matrix Tk is symmetric and banded, with a semi-bandwidth of size
r. The eigenvalues of Tk are the Ritz values of p(A) associated with the
subspace spanned by the columns of Qk and for sufficiently large k the dom-
inant eigenvalues of p(A) will be well approximated by these Ritz values. Of
course we aren’t actually interested in the eigenvalues of p(A) but those of A.
We can recover these eigenvalues by using the fact that p(A) has the same
eigenvectors as A. Assuming that an eigenvector v of p(A) has been com-
puted accurately we can recover the corresponding eigenvalue λ of A from
the Rayleigh quotient of v:

λ =
vTAv

vTv
. (17)

In practice we will often have only a good approximation v̂ of v. The
approximate eigenvector v̂ will be a Ritz vector of p(A) associated with Qk.
To compute these Ritz vectors we first compute an eigendecomposition of Tk.
Since Tk is real and symmetric there exists an orthogonal matrix Wk ∈ Rrk×rk

and a diagonal matrix Λk ∈ Rrk×rk such that

TkWk = WkΛk. (18)

Combining (14) and (18), the Ritz vectors of p(A) are formed as V̂k = QkWk.
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3. Cucheb: a GPU implementation of the filtered Lanczos proce-
dure

A key advantage of the filtered Lanczos procedure is that it requires only
matrix-vector multiplication, an operation that uses relatively low memory
and that is typically easy to parallelize compared to solving large linear sys-
tems. FLP and related methods have already been successfully implemented
on multi-core CPUs and distributed memory machines [3].

3.1. The GPU architecture

A graphical processing unit (GPU) is a single instruction multiple data
(SIMD) scalable model which consists of multi-threaded streaming Multipro-
cessors (SMs), each one equipped with multiple scalar processor cores (SPs),
with each SP performing the same instruction on its local portion of data.
While they were initially developed for the purposes of graphics processing,
GPUs were adapted in recent years for general purpose computing. The de-
velopment of the Compute Unified Device Architecture (CUDA) [33] parallel
programming model by Nvidia, an extension of the C language, provides an
easy way for computational scientists to take advantage of the GPU’s raw
power.

Although the CUDA programming language allows low level access to
Nvidia GPUs, the Cucheb library accesses the GPU through high level rou-
tines included as part of the Nvidia CUDA Toolkit. The main advantage
of this is that one only has to update to the latest version of the Nvidia’s
toolkit in order to make use of the latest GPU technology.

3.2. Implementation details of the Cucheb software package

In this section we discuss the details of our GPU implementation of FLP.
Our implementation will consist of a high-level, open source C++ library
called Cucheb [34] which depends only on the Nvidia CUDA Toolkit [35, 33]
and standard C++ libraries, allowing for easy interface with Nvidia brand
GPUs. At the user level, the Cucheb software library consists of three basic
data structures:

• cuchebmatrix

• cucheblanczos

• cuchebpoly
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The remainder of this section is devoted to describing the role of each of
these data structures.

3.2.1. Sparse matrices and the cuchebmatrix object

The first data structure, called cuchebmatrix, is a container for storing
and manipulating sparse matrices. This data structure consists of two sets of
pointers, one for data stored in CPU memory and one for data stored in GPU
memory. Such a duality of data is often necessary for GPU computations if
one wishes to avoid costly memory transfers between the CPU and GPU. To
initialize a cuchebmatrix object one simply passes the path to a symmetric
matrix stored in the matrix market file format [36]. The following segment
of Cucheb code illustrates how to initialize a cuchebmatrix object using
the matrix H2O downloaded from the University of Florida sparse matrix
collection [37]:

#include "cucheb.h"

int main(){

// declare cuchebmatrix variable

cuchebmatrix ccm;

// create string with matrix market file name

string mtxfile("H2O.mtx");

// initialize ccm using matrix market file

cuchebmatrix_init(&mtxfile, &ccm);

.

.

.

}

The function cuchebmatrix_init opens the data file, checks that the ma-
trix is real and symmetric, allocates the required memory on the CPU and
GPU, reads the data into CPU memory, converts it to an appropriate format
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for the GPU and finally copies the data into GPU memory. By appropriate
format we mean that the matrix is stored on the GPU in compressed sparse
row (CSR) format with no attempt to exploit the symmetry of the matrix.
CSR is used as it is one of the most generic storage scheme for performing
sparse matrix-vector multiplications using the GPU. (See [38, 39] and ref-
erences therein for a discussion on the performance of sparse matrix-vector
multiplications in the CSR and other formats.) Once a cuchebmatrix object
has been created, sparse matrix-vector multiplications can then be performed
on the GPU using the Nvidia CUSPARSE library [40].

3.2.2. Lanczos and the cucheblanczos object

The second data structure, called cucheblanczos, is a container for stor-
ing and manipulating the vectors and matrices associated with the Lanczos
process. As with the cuchebmatrix objects, a cucheblanczos object pos-
sesses pointers to both CPU and GPU memory. While there is a function for
initializing a cucheblanczos object, the average user should never do this
explicitly. Instead they should call a higher level routine like
cuchebmatrix_lanczos which takes as an argument an uninitialized cucheblanczos

object. Such a routine will then calculate an appropriate number of Lanczos
vectors based on the input matrix and initialize the cucheblanczos object
accordingly.

Once a cuchebmatrix object and corresponding cucheblanczos object
have been initialized, one of the core Lanczos algorithms can be called to
iteratively construct the Lanczos vectors. Whether iterating with A or p(A),
the core Lanczos routines in Cucheb are essentially the same. The algorithm
starts by constructing an orthonormal set of starting vectors (matrix Q in
(13)). Once the vectors are initialized the algorithm expands the Krylov
subspace, peridiocally checking for convergence. To check convergence the
projected problem (18) is copied to the CPU, the Ritz values are computed
and the residuals are checked. If the algorithm has not converged the Krylov
subspace is expanded further and the projected problem is solved again. For
stability reasons Cucheb uses full reorthogonalization to expand the Krylov
subspace, making the algorithm more akin to the Arnoldi method [41]. Due
to the full reorthogonalization, the projected matrix Tk from (18) will not
be symmetric exactly but it will be symmetric to machine precision, which
justifies the use of an efficient symmetric eigensolver (see for example [42]).
The cost of solving the projected problem is negligible compared to expanding
the Krylov subspace, so we can afford to check convergence often. All the



Cucheb: GPU accelerated filtered Lanzcos 13

operations required for reorthogonalization are performed on the GPU using
the Nvidia CUBLAS library [43]. Solving the eigenvalue problem for Tk is
done on the CPU using a special purpose built banded symmetric eigensolver
included in the Cucheb library.

It is possible to use selective reorthogonalization [44, 23, 45] or implicit
restarts [14, 15], though we don’t make use of these techniques in our code. In
Section 4 we will see that the dominant cost in the algorithm is the matrix-
vector multiplication with p(A), so reducing the number of products with
p(A) is the easiest way to shorten the computation time. Techniques like
implicit restarting can often increase the number of iterations if the size of
the maximum allowed Krylov subspace is too small, meaning we would have
to perform more matrix-vector multiplications. Our experience suggests that
the best option is to construct a good filter polynomial and then compute
increasingly larger Krylov subspaces until the convergence criterion is met.

All the Lanczos routines in Cucheb are designed to compute all the eigen-
values in a user prescribed interval [α, β]. When checking for convergence the
Ritz values and vectors are sorted according to their proximity to [α, β] and
the method is considered to be converged when all the Ritz values in [α, β] as
well as a few of the nearest Ritz values outside the interval have sufficiently
small residuals. If the iterations were done using A then the computation is
complete and the information is copied back to the CPU. If the iterations
were done with p(A) the Rayleigh quotients are first computed on the GPU
and then the information is copied back to the CPU.

To use Lanczos with A to compute all the eigenvalues in [α, β] a user is
required to input five variables:

1. a lower bound on the desired spectrum (α)

2. an upper bound on the desired spectrum (β)

3. a block size

4. an initialized cuchebmatrix object

5. an uninitialized cucheblanczos object

The following segment of Cucheb code illustrates how to do this using the
function cuchebmatrix_lanczos for the interval [α, β] = [.5, .6], a block size
of 3 and an already initialized cuchebmatrix object:

#include "cucheb.h"
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int main(){

// initialize cuchebmatrix object

cuchebmatrix ccm;

string mtxfile("H2O.mtx");

cuchebmatrix_init(&mtxfile, &ccm);

// declare cucheblanczos variable

cucheblanczos ccl;

// compute eigenvalues in [.5,.6] using block Lanczos

cuchebmatrix_lanczos(.5, .6, 3, &ccm, &ccl);

.

.

.

}

This function call will first approximate the upper and lower bounds on the
spectrum of the cuchebmatrix object. It then uses these bounds to make
sure that the interval [α, β] is valid. If it is, it will adaptively build up
the Krylov subspace as described above, periodically checking for conver-
gence. For large matrices or subintervals well inside the spectrum, standard
Lanczos may fail to converge all together. A better choice is to call the
routine cuchebmatrix_filteredlanczos which automatically constructs a
filter polynomial and then uses FLP to compute all the eigenvalues in [α, β].

3.2.3. Filter polynomials and the cuchebpoly object

To use FLP one needs a way to store and manipulate filter polynomials
stored in a Chebyshev basis. In Cucheb this is done with the cuchebpoly

object. The cuchebpoly object contains pointers to CPU and GPU memory
which can be used to construct and store filter polynomials. For the filter
polynomials from Section 2 one only needs to store the degree, the Chebyshev
coefficients and upper and lower bounds for the spectrum of A.

As with cucheblanczos objects, a user typically will not need to initialize
a cuchebpoly object themselves as it will be handled automatically by a
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higher level routine. In cuchebmatrix_filteredlanczos for example, not
only is the cuchebpoly object for the filter polynomial initialized but also
the degree at which the Chebyshev approximation should be truncated is
computed. This is done using a simple formula based on heuristics and
verified by experiment. Assuming the spectrum of A is in [−1, 1], a “good”
degree m for [α, β] ⊂ [−1, 1] is computed using the following formula:

m = min{m > 0 : ||pm − φ|| < ε||φ||}, (19)

where ||f || is the weighted Chebyshev 2-norm. The tolerance ε is a parameter
and is chosen experimentally, with the goal of maximizing the separation
power of the filter while keeping the polynomial degree and consequently the
computation time low.
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Figure 2: Chebyshev and approximation of the ideal filter φ. Left: [α, β] = [.1, .3] with an
optimal degree of 48, right: [α, β] = [−1,−.5] with an optimal degree of 10.

Figure 2 uses the same ideal filters from Figure 1 but this time computes
the filter degree based on (19). In the left subfigure the interval of interest is
located around the middle of the spectrum [α, β] = [.1, .3] and the distance
between α and β is relatively small, giving a filter degree of 48. In the right
subfigure the interval of interest is located at the left extreme part of the
spectrum [α, β] = [−1,−.5] and the distance α and β is relatively large, giving
a filter degree of 10. Although these filters seem like worse approximations
than those in Figure 1, the lower degrees lead to much shorter computation
times.

The following segment of Cucheb code illustrates how to use the function
cuchebmatrix_filteredlanczos to compute all the eigenvalues in the in-
terval [α, β] = [.5, .6] of an already initialized cuchebmatrix object using
FLP with a block size of 3:
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#include "cucheb.h"

int main(){

// initialize cuchebmatrix object

cuchebmatrix ccm;

string mtxfile("H2O.mtx");

cuchebmatrix_init(&mtxfile, &ccm);

// declare cucheblanczos variable

cucheblanczos ccl;

// compute eigenvalues in [.5,.6] using filtered Lanczos

cuchebmatrix_filteredlanczos(.5, .6, 3, &ccm, &ccl);

.

.

.

}

4. Experiments

In this section we illustrate the performance of our GPU implementation
of the filtered Lanczos procedure. Our test matrices (Hamiltonians) origi-
nate from electronic structure calculations. In this setting, one is typically
interested in computing a few eigenvalues around the Fermi level of each
Hamiltonian. The Hamiltonians were generated using the PARSEC package
[46] and can be also found in the University of Florida sparse matrix col-
lection [37].3 These Hamiltonians are real, symmetric, and have clustered,
as well as multiple, eigenvalues. Table 1 lists the size n, the total number
of non-zero entries nnz, as well as the endpoints of the spectrum of each
matrix, i.e., the interval defined by the algebraically smallest/largest eigen-
values. The average number of nonzero entries per row for each Hamiltonian

3https://www.cise.ufl.edu/research/sparse/matrices/
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Figure 3: Sparsity pattern of the PARSEC matrices. Left: Si41Ge41H72. Right: Si87H76.

is quite large, a consequence of the high-order discretization and the addition
of a (dense) ‘non-local’ term. Figure 3 plots the sparsity pattern of matrices
Si41Ge41H72 (left) and Si87H76 (right).

All GPU experiments in this section were implemented using the Cucheb
library and performed on the same machine which has an Intel Xeon E5-
2680 v3 2.50GHz processor with 128GB of CPU RAM and two Nvidia K40
GPUs each with 12GB of GPU RAM and 2880 compute cores. We make no
attempt to access mutliple GPUs and all the experiments were performed
using a single K40.

Matrix n nnz nnz/n Spectral interval

Ge87H76 112, 985 7, 892, 195 69.9 [−1.21e+0, 3.28e+1]
Ge99H100 112, 985 8, 451, 395 74.8 [−1.23e+0, 3.27e+1]
Si41Ge41H72 185, 639 15, 011, 265 80.9 [−1.21e+0, 4.98e+1]
Si87H76 240, 369 10, 661, 631 44.4 [−1.20e+0, 4.31e+1]
Ga41As41H72 268, 096 18, 488, 476 69.0 [−1.25e+0, 1.30e+3]

Table 1: A list of the PARSEC matrices used to evaluate our GPU implementation, where
n is the dimension of the matrix, nnz is the number of nonzero entries and [λmin, λmax] is
the spectral interval.

Exploiting eigenvalue solvers that are based on matrix factorizations, e.g.,
shift-and-invert techniques, has been shown to be impractical for matrices of
the PARSEC matrix collection [47, 48, 50]. The reason is that performing
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the LU factorization of each Hamiltonian results in a huge amount of fill-in
in the associated triangular factors, requiring an excessive amount of mem-
ory and computations [47]. On the other hand, polynomial filtering accesses
the Hamiltonians in their original form and only requires an efficient matrix-
vector multiplication routine. Polynomial filtering has often been reported
to be the most efficient numerical method for solving eigenvalue problems
with the PARSEC matrix collection [3, 1, 4, 5, 6, 7]. This observation led
to the development of FILTLAN, a C/C++ software package which imple-
ments the filtered Lanczos procedure with partial reorthgonalization [1] for
serial architectures. The Cucheb library featured in this paper, although
implemented in CUDA, shares many similarities with FILTLAN. There are,
however, a few notable differences. Cucheb does not implement partial re-
orthgonalization as is the case in FILTLAN. Moreover, Cucheb includes the
ability to use block counterparts of the Lanczos method which can be more
efficient in the case of multiple or clustered eigenvalues. Morover FILTLAN
uses a more complicated least-squares filter polynomial while Cucheb utilizes
the fitlers described in section 2.

4.1. GPU benchmarking

The results of the GPU experiments are summarized in Table 2. The
variable ‘interval’ for each Hamiltonian was set so that it included roughly
the same number of eigenvalues from the left and right side of the Fermi level,
and in total ‘eigs’ eigenvalues. For each matrix and interval [α, β] we repeated
the same experiment five times, each time using a different degree m for the
filter polynomial. The variable ‘iters’ shows the number of FLP iterations,
while ‘MV’ shows the total number of matrix-vector products (MV) with A,
which is computed using the formula ‘MV’ = rm × ‘iters’. Throughout
this section, the block size of the FLP will be equal to r = 3. Finally, the
variables ‘time’ and ‘residual’ show the total compute time and maximum
relative residual of the computed eigenpairs. The first four rows for each
matrix correspond to executions where the degree m was selected a priori.
The fifth row corresponds to an execution where the degree was selected
automatically by our implementation, using the mechanism described in (19).
As expected, using larger values for m leads to faster convergence in terms
of total iterations, since higher degree filters are better at separating the
wanted and unwanted portions of the spectrum. Although larger degrees
lead to less iterations, the amount of work in each filtered Lanczos iteration
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is also increasing proportionally. This might lead to an increase of the actual
computational time, an effect verified for each one of the matrices in Table 2.

Matrix interval eigs m iters MV time residual

50 210 31, 500 31 1.7e−14
100 180 54, 000 40 4.0e−13

Ge87H76 [−0.645,−0.0053] 212 150 150 67, 500 44 7.4e−14
200 150 90, 000 56 6.3e−14
49 210 30, 870 31 9.0e−14
50 210 31, 500 32 6.2e−13

100 180 54, 000 41 8.6e−13
Ge99H100 [−0.650,−0.0096] 250 150 180 81, 000 56 5.0e−13

200 180 108, 000 70 1.1e−13
49 210 30, 870 32 3.2e−13
50 210 31, 500 56 6.4e−13

100 180 54, 000 73 2.0e−11
Si41Ge41H72 [−0.640,−0.0028] 218 150 180 81, 000 99 5.6e−14

200 150 90, 000 104 5.0e−13
61 180 32, 940 52 8.9e−13
50 150 22, 500 38 3.5e−14

100 90 27, 000 35 4.0e−15
Si87H76 [−0.660,−0.3300] 107 150 120 54, 000 63 9.1e−15

200 90 54, 000 60 1.3e−13
98 90 26, 460 35 1.2e−14

200 240 144, 000 225 1.5e−15
300 180 162, 000 236 2.1e−15

Ga41As41H72 [−0.640, 0.0000] 201 400 180 216, 000 306 2.5e−15
500 180 270, 000 375 1.0e−12
308 180 166, 320 242 1.5e−15

Table 2: Computing the eigenpairs inside an interval using FLP with various filter poly-
nomial degrees. Times listed are in seconds.

Table 3 compares the percentage of total computation time required by
the different subprocesses of the FLP method. We denote the preprocessing
time, which consists solely of approximating the upper and lower bounds of
the spectrum for A, by ‘PREPROC’. We also denote the total amount of
time spent in the full reorthogonalization and the total amount of time spent
in performing all MV products of the form p(A)v on the GPU, by ‘ORTH’
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and ‘MV’ respectively. As we can verify, all matrices in this experiment
devoted no more than 12% of the total compute time to estimating the
spectral interval (i.e. the eigenvalues λmin and λmax). For each one of the
PARSEC test matrices, the dominant cost came from the MV products,
due to their relatively large number of non-zero entries. Note that using a
higher degree m will shift the cost more towards the MV products, since the
Lanczos procedure will typically converge in fewer outer steps and thus the
orthogonalization cost reduces.

We would like to note that the Cucheb software package is capable of
running Lanczos without filtering. We originally intended to compare fil-
tered Lanczos with standard Lanczos on the GPU, however for the problems
considered in this paper the number of Lanczos vectors required for conver-
gence exceeded the memory of the K40 GPU. This suggests that for these
particular problems filtering is not only beneficial for performance but also
necessary if this particular hardware is used.

4.2. CPU-GPU comparison

Figure 4 shows the speedup of the GPU FLP implementation over the
CPU-based counterpart. The CPU results were obtained by executing the
FILTLAN software package on the Mesabi linux cluster at University of
Minnesota Supercomputing Institute. Mesabi consists of 741 nodes of various
configurations with a total of 17,784 compute cores provided by Intel Xeon
E5-2680 v3 processors. Each node features two sockets, each socket with
twelve physical cores, and each core with a clock speed of 2.50 GHz. Each
node is also equipped with 64 GB of RAM memory. The FILTLAN package
has the option to link the Intel Math Kernel Library (MKL) when it, as well
as a compatible Intel compiler are available. For these experiments we used
the Intel compiler icpc version 11.3.2.

We have divided the comparison into four parts: a “low degree” situation
when m = 50 (m = 200 for Ga41As41H72), and a “high degree” situation
when m = 100 (m = 300 for Ga41As41H72) and within each of these we also
executed FILTLAN using both 1 thread and 24 threads. The multithreading
was handled entirely by the MKL. In the single thread case, the GPU im-
plementation obtains a speedup which ranges between 10 and 14. In the 24
thread case, which corresponds to one thread per core on this machine, the
speedups ranged between 2 and 3.
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Matrix m iters PREPROC ORTH MV

50 210 7% 22% 52%
100 180 5% 13% 71%

Ge87H76 150 150 5% 9% 80%
200 150 4% 7% 84%
49 210 7% 21% 52%
50 210 7% 21% 53%

100 180 5% 13% 71%
Ge99H100 150 180 4% 10% 79%

200 180 3% 8% 83%
49 210 7% 21% 53%
50 210 10% 19% 55%

100 180 8% 12% 72%
Si41Ge41H72 150 180 6% 9% 80%

200 150 5% 6% 84%
61 180 11% 17% 61%
50 150 11% 22% 54%

100 90 12% 12% 70%
Si87H76 150 120 7% 10% 78%

200 90 7% 7% 83%
98 90 12% 13% 70%

200 240 4% 8% 82%
300 180 4% 5% 88%

Ga41As41H72 400 180 3% 4% 91%
500 180 2% 3% 93%
308 180 4% 5% 89%

Table 3: Percentage of total compute time required by various components of the algo-
rithm. For all these examples the dominant computational cost are the matrix-vector
multiplications (MV).

5. Conclusion

In this work we presented a GPU implementation of the filtered Lanczos
procedure for solving large and sparse eigenvalue problems such as those that
arise from real-space DFT methods in electronic structure calculations. Our
experiments indicate that the use of GPU architectures in the context of
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Figure 4: Speedup of the GPU FLP implementation over the CPU (FILTLAN) for the
PARSEC test matrices.

electronic structure calculations can provide a speedup of at least a factor of
10 over a single core CPU implementation and at least of factor of 2 for a 24
core implementation.

Possible future research directions include the utilization of more than one
GPU to perform the filtered Lanczos procedure in computing environments
with access to multiple GPUs. Each GPU can then be used to either perform
the sparse matrix-vector products and other operations of the FLP in parallel,
or compute all eigenpairs in a sub-interval of the original interval. In the
later case the implementation proposed in this paper can be used without
any modifications. Another interesting extension would be to use additional
customization and add support for other sparse matrix formats. A dense
matrix version of the proposed implementation would also be of interest for
solving sequences of eigenvalue problems as in [49].
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