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Abstract—Multilinear singular value decomposition (MLSVD),
also known as Higher-order SVD (HOSVD), is a popular method
for approximating a tensor of order ≥ 3 via a smaller core
tensor and corresponding factor matrices. While MLSVD has
found numerous applications, it is not designed to handle tensors
that vary over time. In this work we propose an algorithm
for updating the MLSVD of an evolving tensor via leveraging
Rayleigh-Ritz matrix projection techniques. In particular, we
consider the case where at each time step the dimensions of the
tensor are augmented and its entries may change. Preliminary
tests on synthetic and real data showcase the potential of the
proposed approach.

Index Terms—Tensor decomposition, online, multilinear singu-
lar value decomposition, rayleigh-ritz

I. INTRODUCTION

Tensors, also known as higher order arrays, are math-
ematical constructs that extend the notion of matrices to
more than 2 dimensions, and can represent a plethora of
data, such as video, time-varying graphs, and recommendation
datasets [1]. Tensor decompositions are invaluable tools that
enable manipulation, analytics and inference from multimodal
and tensor data [2], [3]. Popular decompositions include the
Canonical Polyadic Decomposition (CPD), the Tucker decom-
position, and the Multilinear or Higher-order Singular Value
decomposition (MLSVD or HOSVD) [4], which is the focus
of this work. A significant body of work has focused on
creating computationally and memory efficient decomposition
algorithms for static tensors. However, in some cases, such
as real-time applications, the tensor of interest may change
over time. If one needs to track the decomposition of such
an evolving tensor, using algorithms developed for static
tensors at each time step may incur prohibitive computational
complexity, especially if changes occur with high frequency.

Recently, several approaches have been developed for de-
composing evolving tensors. Tensor updates under the CPD
model were considered in [5]. An algorithm to track the
UTV decomposition of an evolving tensor was advocated for
in [6]. A random sketching based approach to update the
Tucker decomposition was proposed in [7]. Closer in spirit
to this contribution, [8]–[10] utilize matrix subspace tracking
approaches to update the MLSVD of a dynamic tensor.

In this work, we develop a novel matrix resolvent-based
approach to dynamically update the MLSVD of a tensor as
new slabs are added over time. Our novel approach updates
the singular value decomposition of the matricizations of
the tensor, via the Rayleigh-Ritz approximation procedure.

The use of this judiciously designed Rayleigh-Ritz procedure
enables our algorithm to accurately track the MLSVD of
a time-varying tensor while maintaining low computational
complexity, as it takes advantage of computations performed in
previous time-steps. The proposed method is benchmarked on
synthetic and real data, where it approaches the reconstruction
accuracy of the baseline.
Notation. Unless otherwise noted, lowercase bold letters, x,
denote column vectors, uppercase bold letters, X, represent
matrices, underlined uppercase letters, X , represent tensors,
and calligraphic uppercase letters, X , stand for sets. We adopt
the notation of [4], [11], and the (i, j, k)-th entry of a tensor
X is denoted by X(i, j, k). The (i, j)-th entry of matrix X
is denoted by X(i, j); vec(X) denotes a vector consisting
of the stacked columns of X; ◦ denotes the outer (tensor)
product between two vectors or matrices; and ⊗ denotes the
Kronecker product between two matrices. The Frobenius norm
of a matrix X is denoted by ∥X∥F . ⊤ represents transpose;
card(A) denotes the cardinality, i.e. the number of elements,
of set A; E[·] denotes expectation, and 1(A) is the indicator
function for the event A, that takes value 1 when A occurs,
and 0 otherwise.

II. PRELIMINARIES AND PROBLEM STATEMENT

While the analysis and results in this paper readily apply to
tensors with arbitrary number of modes, for simplicity of expo-
sition the remainder of this paper will focus on 3-order tensors.
Consider a 3-order tensor X of dimension I × J × K with
entries X(i, j, k), i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.
The I ×J matrix formed by considering only the k-th frontal
slab of X is denoted as X(:, :, k). Accordingly the I×K k-th
lateral and J×K horizontal slabs are denoted as X(:, k, :) and
X(k, :, :) respectively. The tensor X can be represented as a
matrix in three different ways, by concatenating (vectorized)
slabs:

X1 = [vec(X(1, :, :)), . . . , vec(X(I, :, :))],

X2 = [vec(X(:, 1, :)), . . . , vec(X(:, J, :))],

X3 = [vec(X(:, :, 1)), . . . , vec(X(:, :,K))].

The matrices X1, X2, and X3 are also called matricizations
of the tensor X , with the matrix Xm representing the mode-
m unfolding of X . For a 3-rd order tensor X1 contains all
the ”rows” of X as columns, X2 contains all the columns of
X as columns, and X3 collects all the frontal slabs of X as
columns.



A. The Tucker decomposition and MLSVD

The Tucker decomposition posits that X can be written as

X =

r1∑

i=1

r2∑

j=1

r3∑

k=1

G(i, j, k)ai ◦ bj ◦ ck,

where G is an r1 × r2 × r3 “core” tensor, and a,b, c are
columns of the I × r1 matrix A, the J × r2 matrix B and the
K × r3 matrix C respectively. Thus, under the Tucker model,
a 3rd-order tensor X is represented by a 3rd-order core tensor
G and three so-called factor matrices A,B and C. It can be
shown that the matricizations of a tensor that adheres to the
Tucker model take the following form

X1 = (B⊗C)G1A
⊤,

X2 = (A⊗C)G2B
⊤,

X3 = (A⊗B)G3C
⊤ (1)

with Gi denoting the i-th mode matricization of the core
tensor G. Typically, the factor matrices A,B,C and core
tensor G are estimated using alternating least squares.

Multilinear or Higher-order SVD [12], [13] can be consid-
ered as a variant of the Tucker model, and provides a straight-
forward way, reminiscent of the matrix SVD, to compute
the factor matrices A,B,C and the core tensor G. Consider
the rank-r1, rank-r2, and rank-r3 SVDs of X1, X2 and X3

respectively,

X1 = U1Σ1V
⊤
1 ,

X2 = U2Σ2V
⊤
2 ,

X3 = U3Σ3V
⊤
3 .

In particular, in MLSVD the factor matrices are chosen as
orthonormal bases for the row, column and frontal slabs of
X. As such they can computed as the right singular vectors
of the matricizations of X1,X2 and X3, that is

A = V1, B = V2, C = V3

After computing the factor matrices the matricized version
core tensor can be recovered in matrix form as

G1 = (B⊗C)⊤X1A.

The core tensor G can be recovered by appropriately reshaping
G1. We compactly denote the MLSVD (or Tucker decompo-
sition) of X , with core tensor G and factor matrices A,B
and C as X = {G,A,B,C}. When r1 = r2 = r3 = ℓ the
decomposition is called the rank-ℓ MLSVD of X. Clearly, the
complexity of MLSVD is dominated by the SVD computations
required.

B. Problem statement

Suppose that the tensor X changes over time, and at each
time step t, nt ∈ N new frontal slabs are added. The newly
added slabs can be collected in a I × J × nt tensor Et. The
augmented I × J × Kt tensor is denoted as Xt = [X,Et],
where Kt = Kt−1 + nt denotes the time-varying third
dimension. Note that tensor extensions along the horizontal

and/or lateral directions can be treated in a similar fashion.
The task of updating the MLSVD of Xt at each time-step t
involves extracting the factor matrices At,Bt,Ct and core
tensor Gt. The next section will present our proposed method
for updating the MLSVD of an evolving tensor.

III. DYNAMIC MLSVD

As the tensor changes with time, so do its matricizations.
In particular, new rows are appended on X1, i.e. X1,t =
[X⊤

1,t−1,E
⊤
1,t]

⊤, where E1,t is a matrix containing the vec-
torization of the newly added slabs. Similarly, the mode-2
matricization of Xt can be also seen as equivalent to row
augmentation of the corresponding mode-2 matricization of
X up to column permutation, i.e., X2,t = [X⊤

2,t−1E
⊤
2,t]

⊤.
On the other hand, the mode-3 matricization is updated via
column additions as X3,t = [X3,t−1E3,t]. Nevertheless, by
transposing X3,t−1, all tensor matricizations can be viewed as
addition of new rows. As such for the remainder of this paper
all matrix extensions are treated as additions of new rows1 For
brevity, the rest of this section will focus on a single time-step
progression from step t− 1 to step t. Also define X = Xt−1

and X̂ = Xt.

A. Appending frontal slabs on 3-order tensors

Focusing on a single time-step update of a 3-mode tensor,
Algorithm 1 sketches the general procedure for updating the
MLSVD of a tensor. Here, the truncated MLSVD of the I×J×
K tensor X is updated to that of the augmented I×J×(K+n)
tensor X̂ = [X,E], with the I × J × n tensor E collecting
the new slabs.

Algorithm 1 Rank ℓ MLSVD update for a 3-mode tensor.

1: Input: Rank ℓ MLSVD of the I × J × K tensor X =
{G,A,B,C}, Rank ℓ SVDs of matricizations Xm =
UmΣmV⊤

m,m = 1, 2, 3, I × J × n extension tensor E,
ℓ ∈ N

2: Output: Rank ℓ MLSVD of X̂ = [X,E] =
{Ĝ, Û1, Û2, Û3}

3: For m ∈ {1, 2, 3} Form the m-th matricization Xm of X .
Append to it the corresponding matricization Em of E.

4: For m ∈ {1, 2, 3} set X̂m =

[
Xm

Em

]
.

5: For m ∈ {1, 2, 3}, approximate the updated rank-ℓ trun-
cated SVD of the matrix X̂m via Alg. 2

6: Recover Ĝ using X̂ and Û1, Û2, Û3.

The key step of Algorithm 1 is the extension of the matrix
formed by the ℓ dominant left singular vectors of the m-th
matricization of X , Um to the ℓ dominant left singular vectors
of the i-th matricization X̂m of X̂ , Ûm, m = 1, 2, 3. The
standard approach to achieve this is to compute Ûm from
scratch per matricization of X̂ . Nonetheless, X̂m contains
IJ(K + n) entries, of which IJK entries also appear in the

1Since we are dealing with row additions, it is convenient to work with the
forward cyclic matricization of [14].



m-th matricization Xm of the tensor X for which ℓ dominant
left singular vectors Um are considered available. Following
the above discussion, extending a I × J ×K tensor X by n
frontal slabs requires the computation of the ℓ dominant left
singular vectors of a sequence of matrices where each said
matrix is a row/column extension of a matrix for which the
ℓ dominant left singular vectors are available. Thus, one can
think of re-using the information in Um to “warm-start” the
approximation of Ûm.

This problem is known as SVD updating and is a well-
studied topic in computational linear algebra with applications
in latent semantic indexing, recommender systems, and vision,
to name a few [15], [16]. In this paper we exploit the approach
outlined in [17] (see also [18]) and approximate Ûm via a
projection onto a judiciously crafted subspace. The projection
should reduce the dimension of the problem significantly to
reduce computational complexity, while capturing the critical
subspace contained in X̂m. Note, the approach in [17] can be
applied to both row and column update problems.

B. Updating the SVD of a matricization

To illustrate how the proposed algorithm works, we focus
on the row augmentation scenario for a single matricization
and a single time-step. Here, a p×n matrix X, corresponding
to a matricization of X , is augmented to a (p+ s)×n matrix
X̂ for s > 0. The case of column augmentation can be treated
in the same way via transposition. Let X = UΣV⊤ denote
the rank-ℓ truncated SVD of X and let E be a row extension
matrix collecting the data to be appended to X. Then X̂⊤ =
[X⊤E⊤]⊤.

Algorithm 2 Truncated SVD update (row extension).

1: Input: X ∈ Rp×n, E ∈ Rs×n, U ∈ Rr×ℓ, Σ ∈
Rℓ×ℓ, V ∈ Rn×ℓ, λ ∈ R

2: Set Z =

[
U Q

I

]
, where Q denotes an orthonormal

basis of (I−UU⊤)(λI−XX⊤)−1XE⊤

3: Set X̂ =

[
X
E

]

4: Compute the rank-ℓ truncated SVD of Z⊤X̂ = ŨΣ̃Ṽ⊤

5: Set Û = ZŨ
6: Set Σ̂ = Σ̃
7: Set V̂ = X̂⊤ÛΣ̂−1

8: Output: Û, Σ̂, V̂

The proposed truncated SVD updating mechanism for each
matricization is based on the Rayleigh-Ritz approximation [19]
and is outlined in Algorithm 2 (see also [17]). Per the
Rayleigh-Ritz procedure, the rank ℓ SVD of X̂ can be ap-
proximated via the rank ℓ SVD of the dimensionality reduced
matrix Z⊤X̂, for an appropriate choice of Z. Denote the rank-
ℓ SVD of the reduced matrix as Z⊤X̂ = ŨΣ̃Ṽ⊤. A proper
choice for the projection matrix Z is

Z =

[
U Q

I

]
, (2)

where Q is an orthonormal basis of (I − UU⊤)(λI −
XX⊤)−1XE⊤, I is the identity matrix of dimension s × s
and λ is a scalar that is larger than the square of the leading
singular value of the matrix X̂ [18]. Such a λ can be obtained
via Gershgorin’s circle theorem [19].

To see why Z is a prudent choice for projection basis,
let (σ̂, û) denote one of the ℓ dominant singular values
and associated left singular vector of the matrix X̂, where
û = [r̂⊤, ŷ⊤]⊤, r̂ ∈ Rp, ŷ ∈ Rs. Then, one can write

[
XX⊤ − σ̂I XE⊤

EX⊤ EE⊤ − σ̂I

] [
r̂
ŷ

]
= 0 (3)

from which it follows r̂ = (σ̂I−XX⊤)−1XE⊤ŷ, and thus

û =

[
r̂
ŷ

]
∈ Ran

([
(σ̂I−XX⊤)−1XE⊤ 0

0 I

])

∈ Ran

([
U (I−UU⊤)(σ̂I−XX⊤)−1XE⊤ 0
0 0 I

])
.

The particular choice of the matrix Z corresponds to a zero-
order approximation of (I − UU⊤)(σ̂I − XX⊤)−1XE⊤

around a scalar λ > σ̂.
Finally, the approximate rank-ℓ truncated SVD of the matrix

X̂ is recovered by computing the ℓ dominant left and singular
vectors as Û = ZŨ and V̂ = X̂⊤ÛΣ̂−1. The entire
procedure is outlined in Alg. 2. Alg. 2 receives as inputs a
matricization X, along with its rank-ℓ truncated SVD UΣV⊤,
the row extension matrix E and an estimate λ. Note, Alg. 2
is performed on all matricizations of a tensor X. Alg. 1 is
repeated for each update that occurs on the tensor of interest.

IV. NUMERICAL TESTS

The performance of the proposed MLSVD update scheme
is evaluated in this section. The tensors considered are updated
by appending new frontal slabs to them at each time-step. All
experiments are conducted in a MATLAB environment [11],
using 64-bit arithmetic, on a single core of a computing system
equipped with an 2.3 GHz 8-Core Intel Core i9 processor and
64 GB of DDR4 system memory.

Two datasets are considered: a synthetic and a real one. The
first dataset is a synthetic 3-mode tensor X of size 60×60×50
with random entries. The tensor X is extended to the tensor
X̂ = [X,E] of size 60 × 60 × 60, by augmenting the third
dimension of X with ten random matrices of size 60×60. The
second dataset consists of subset of a hyperspectral scenes
gathered by Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor 2 across a wavelength range of 400 to
2500 nm over the Indian Pines test site in North-western
Indiana [20]. This dataset consists of 220 145× 145 images,
each captured in a different wavelength by the AVIRIS sensor.
A visualization of the dataset can be seen in Figure 1. The
initial tensor X is created by retaining the 145 × 145 × 200
subtensor of the original dataset and setting the remaining
145× 145× 20 as the update tensor E.

2https://aviris.jpl.nasa.gov/



Fig. 1: Hyperspectral Image of the Indian Pines dataset [20].

For both datasets, our goal is to exploit the rank-ℓ MLSVD
of X to approximate a rank-ℓ MLSVD of X̂ without com-
puting the individual rank-ℓ truncated SVDs of each different
matricization of X̂ from scratch. The figure of merit for both
datasets is thee relative approximation error ∥X̂−T∥F /∥X̂∥F
where T denotes the rank-ℓ MLSVD of X̂ . The approximation
T is formed using three different approaches:

• A1: Computing the rank-ℓ MLSVD of X from scratch at
each timestep,

• A2: dynamically update the rank-ℓ MLSVD of X via
Algorithm 2

• A3: dynamically update the rank-ℓ MLSVD of X via

Algorithm 2 with Z =

[
U

I

]
.

Figures 2 and 3 plot the approximation error for synthetic and
real data, respectively. As expected, A1 enjoys the highest
accuracy since it computes the exact rank-ℓ MLSVD at each
time step. On the other hand, A2 and A3 result to a less
accurate approximation, which, however, can be obtained
with markedly reduced complexity, especially when the initial
tensor X is similar in size to X̂ . Among the two inexact
approaches, the resolvent-based approach A2 leads to higher
accuracy.

V. CONCLUSIONS

In this paper we considered the problem of updating the
truncated MLSVD of a tensor subject to the addition of frontal
slabs. In this setting, the computation of the MLSVD of the
augmented tensor requires the computation of the truncated
SVD of all possible matricizations of the tensor and each such
matricization is by itself a row/column extension of the matri-
cizations prior to the tensor update. Our algorithm presented a
framework to exploit the truncated SVD of the matricizations
prior to the tensor extension in order to approximate the
truncated SVD of the updated matricizations. Our framework
is based on Rayleigh-Ritz projections where the truncated
SVD of a matrix is updated via projection onto a low-
dimensional subspace. Several options to set the projection
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Fig. 2: Approximation error of a synthetic tensor of size 60×
60× 60 by a rank-ℓ MLSVD approximation.
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Fig. 3: Approximation error of the Indian Pines dataset by a
rank-ℓ approximation.

subspace were presented, including a scheme based on matrix
resolvent expansions. Numerical experiments confirm that the
proposed algorithm can track the error of the baseline approach
closely.
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